import gradio as gr from langchain_community.document_loaders import PyPDFLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_huggingface import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from langchain_groq import ChatGroq from langchain_core.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough # Initialize the FAISS vector store vector_store = None # Function to handle PDF upload and indexing def index_pdf(pdf): global vector_store # Load the PDF loader = PyPDFLoader(pdf.name) documents = loader.load() # Split the documents into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) texts = text_splitter.split_documents(documents) # Embed the chunks embeddings = HuggingFaceEmbeddings(model_name="bert-base-uncased", encode_kwargs={"normalize_embeddings": True}) # Store the embeddings in the vector store vector_store = FAISS.from_documents(texts, embeddings) return "PDF indexed successfully!" # Function to handle chatbot queries def chatbot_query(query): if vector_store is None: return "Please upload and index a PDF first." # Create a retrieval-based QA chain retriever = vector_store.as_retriever() qa_chain = RetrievalQA(llm=OpenAI(), retriever=retriever) # Get the response from the QA chain response = qa_chain.run(query) return response # Create the Gradio interface with gr.Blocks() as demo: with gr.Tab("Indexing"): pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"]) index_button = gr.Button("Index PDF") index_output = gr.Textbox(label="Indexing Status") index_button.click(index_pdf, inputs=pdf_input, outputs=index_output) with gr.Tab("Chatbot"): query_input = gr.Textbox(label="Enter your question") query_button = gr.Button("Submit") query_output = gr.Textbox(label="Response") query_button.click(chatbot_query, inputs=query_input, outputs=query_output) # Launch the Gradio app demo.launch()