jchen8000 commited on
Commit
87dfed9
·
verified ·
1 Parent(s): 6d5ff05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -0
app.py CHANGED
@@ -232,6 +232,11 @@ with gr.Blocks() as iface:
232
  description="Select a movie to get recommendations based on content filtering.")
233
 
234
  with gr.Tab("Collaborative Filtering"):
 
 
 
 
 
235
  gr.Interface(fn=recommend_movies_cf,
236
  inputs=gr.Dropdown(movie_list, label=f"Select a Movie (Total movies: {total_movies}, randomly list {input_count} for demo purpose.)"),
237
  outputs=[gr.Textbox(label="Recommended Movies:")],
@@ -239,6 +244,7 @@ with gr.Blocks() as iface:
239
  description="Select a movie to get recommendations based on collaborative filtering.")
240
 
241
  with gr.Tab("Collaborative Filtering with Neural Network"):
 
242
  gr.Interface(fn=recommend_movies_cfnn,
243
  inputs=gr.Dropdown(movie_list, label=f"Select a Movie (Total movies: {total_movies}, randomly list {input_count} for demo purpose.)"),
244
  outputs=[gr.Textbox(label="Recommended Movies:")],
 
232
  description="Select a movie to get recommendations based on content filtering.")
233
 
234
  with gr.Tab("Collaborative Filtering"):
235
+ gr.Markdown("""# Movie Recommender - Item-Based Collaborative Filtering
236
+ * Create a movie-user matrix where rows represent movies and columns represent users, each cell contains the rating a user gave to a movie, or 0 if no rating exists.
237
+ * Calculate the cosine similarity between movies based on their rating patterns, results in a movie-movie similarity matrix.
238
+ * For a given movie, find the most similar movies based on this similarity matrix, and recommend these movies.
239
+ """)
240
  gr.Interface(fn=recommend_movies_cf,
241
  inputs=gr.Dropdown(movie_list, label=f"Select a Movie (Total movies: {total_movies}, randomly list {input_count} for demo purpose.)"),
242
  outputs=[gr.Textbox(label="Recommended Movies:")],
 
244
  description="Select a movie to get recommendations based on collaborative filtering.")
245
 
246
  with gr.Tab("Collaborative Filtering with Neural Network"):
247
+ gr.Markdown("A Neural Network is used to predict the missing values in the movie-user matrix, which should improve our collaborative filtering recommendations.")
248
  gr.Interface(fn=recommend_movies_cfnn,
249
  inputs=gr.Dropdown(movie_list, label=f"Select a Movie (Total movies: {total_movies}, randomly list {input_count} for demo purpose.)"),
250
  outputs=[gr.Textbox(label="Recommended Movies:")],