jchen8000 commited on
Commit
88a2d43
·
verified ·
1 Parent(s): c2e19f2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -2
app.py CHANGED
@@ -5,6 +5,9 @@ import gradio as gr
5
  import zipfile
6
  import requests
7
  import io
 
 
 
8
 
9
  # Download and extract the MovieLens dataset
10
  url = 'https://files.grouplens.org/datasets/movielens/ml-latest-small.zip'
@@ -57,10 +60,10 @@ def recommend_movies(movie):
57
  return "Score Title\n" + "\n".join([format_string.format(score, title) for title, score in recommendations])
58
 
59
  # Create the Gradio interface
60
- movie_list = movies['title'].tolist()
61
  total_movies = len(movies)
62
  iface = gr.Interface(fn=recommend_movies,
63
- inputs=gr.Dropdown(movie_list, label=f"Select a Movie (Total movies: {total_movies})"),
64
  outputs="text",
65
  title="Movie Recommender - Content-Based Filtering",
66
  description="Select a movie to get recommendations based on content filtering.")
 
5
  import zipfile
6
  import requests
7
  import io
8
+ import random
9
+
10
+ input_count = 200
11
 
12
  # Download and extract the MovieLens dataset
13
  url = 'https://files.grouplens.org/datasets/movielens/ml-latest-small.zip'
 
60
  return "Score Title\n" + "\n".join([format_string.format(score, title) for title, score in recommendations])
61
 
62
  # Create the Gradio interface
63
+ movie_list = random.sample(movies['title'].tolist(), input_count)
64
  total_movies = len(movies)
65
  iface = gr.Interface(fn=recommend_movies,
66
+ inputs=gr.Dropdown(movie_list, label=f"Select a Movie (Total movies: {total_movies}, randomly list {input_count} for demo purpose.)"),
67
  outputs="text",
68
  title="Movie Recommender - Content-Based Filtering",
69
  description="Select a movie to get recommendations based on content filtering.")