Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import pandas as pd
|
2 |
-
|
3 |
-
from
|
|
|
4 |
import gradio as gr
|
5 |
import zipfile
|
6 |
import random
|
@@ -12,60 +13,63 @@ result_count = 21
|
|
12 |
with zipfile.ZipFile('ml-latest-small.zip') as z:
|
13 |
with z.open('ml-latest-small/movies.csv') as f:
|
14 |
movies = pd.read_csv(f)
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
|
22 |
-
#
|
23 |
-
|
|
|
24 |
|
25 |
-
#
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
indices =
|
30 |
-
|
31 |
-
# Function that takes in movie title as input and outputs most similar movies
|
32 |
-
def get_recommendations(title, cosine_sim=cosine_sim):
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
sim_scores = sim_scores[1:result_count]
|
45 |
-
|
46 |
-
# Get the movie indices
|
47 |
-
movie_indices = [i[0] for i in sim_scores]
|
48 |
-
|
49 |
-
# Return the top 20 most similar movies with their scores
|
50 |
-
recommendations = [(movies['title'].iloc[i], sim_scores[idx][1]) for idx, i in enumerate(movie_indices)]
|
51 |
-
return recommendations
|
52 |
-
|
53 |
-
# Gradio interface
|
54 |
-
def recommend_movies(movie):
|
55 |
-
if not movie:
|
56 |
-
return "No movie selected. Please select one from the dropdown."
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
format_string = "{:>5.2f} {:<20}"
|
60 |
return "Score Title\n" + "\n".join([format_string.format(score, title) for title, score in recommendations])
|
61 |
|
62 |
-
#
|
63 |
-
movie_list = random.sample(movies['title'].tolist(), input_count)
|
64 |
-
total_movies = len(movies)
|
65 |
-
|
66 |
with gr.Blocks() as iface:
|
67 |
with gr.Tab("Content-Based Filtering"):
|
68 |
-
# gr.Markdown("## Recommendation - Content-Based Filtering")
|
69 |
gr.Interface(fn=recommend_movies,
|
70 |
inputs=gr.Dropdown(movie_list, label=f"Select a Movie (Total movies: {total_movies}, randomly list {input_count} for demo purpose.)"),
|
71 |
outputs=[gr.Textbox(label="Recommended Movies:")],
|
@@ -73,8 +77,11 @@ with gr.Blocks() as iface:
|
|
73 |
description="Select a movie to get recommendations based on content filtering.")
|
74 |
|
75 |
with gr.Tab("Collaborative Filtering"):
|
76 |
-
gr.
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
79 |
# Launch the app
|
80 |
-
iface.launch()
|
|
|
1 |
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from scipy.sparse import csr_matrix
|
4 |
+
from sklearn.neighbors import NearestNeighbors
|
5 |
import gradio as gr
|
6 |
import zipfile
|
7 |
import random
|
|
|
13 |
with zipfile.ZipFile('ml-latest-small.zip') as z:
|
14 |
with z.open('ml-latest-small/movies.csv') as f:
|
15 |
movies = pd.read_csv(f)
|
16 |
+
with z.open('ml-latest-small/ratings.csv') as f:
|
17 |
+
ratings = pd.read_csv(f)
|
18 |
|
19 |
+
# Create a user-item matrix
|
20 |
+
user_item_matrix = ratings.pivot(index='userId', columns='movieId', values='rating').fillna(0)
|
21 |
|
22 |
+
# Create a sparse matrix
|
23 |
+
user_item_matrix_sparse = csr_matrix(user_item_matrix.values)
|
24 |
|
25 |
+
# Fit the NearestNeighbors model
|
26 |
+
model_knn = NearestNeighbors(metric='cosine', algorithm='brute', n_neighbors=20, n_jobs=-1)
|
27 |
+
model_knn.fit(user_item_matrix_sparse)
|
28 |
|
29 |
+
# Function to get movie recommendations using collaborative filtering
|
30 |
+
def get_cf_recommendations(user_id, user_item_matrix=user_item_matrix, model_knn=model_knn, movies=movies):
|
31 |
+
if user_id not in user_item_matrix.index:
|
32 |
+
return []
|
33 |
|
34 |
+
user_vector = user_item_matrix.loc[user_id].values.reshape(1, -1)
|
35 |
+
distances, indices = model_knn.kneighbors(user_vector, n_neighbors=result_count)
|
|
|
|
|
|
|
36 |
|
37 |
+
similar_users = user_item_matrix.index[indices.flatten()]
|
38 |
+
similar_users_df = pd.DataFrame({'userId': similar_users, 'distance': distances.flatten()})
|
39 |
+
|
40 |
+
user_seen_movies = set(user_item_matrix.columns[user_item_matrix.loc[user_id] > 0])
|
41 |
+
|
42 |
+
recommendations = []
|
43 |
+
for _, row in similar_users_df.iterrows():
|
44 |
+
similar_user_id = row['userId']
|
45 |
+
similar_user_movies = set(user_item_matrix.columns[user_item_matrix.loc[similar_user_id] > 0])
|
46 |
+
new_movies = similar_user_movies - user_seen_movies
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
for movie_id in new_movies:
|
49 |
+
movie_title = movies.loc[movies['movieId'] == movie_id, 'title'].values[0]
|
50 |
+
score = 1 - row['distance'] # Convert distance to similarity score
|
51 |
+
recommendations.append((movie_title, score))
|
52 |
+
|
53 |
+
recommendations.sort(key=lambda x: x[1], reverse=True)
|
54 |
+
return recommendations[:result_count]
|
55 |
+
|
56 |
+
# Gradio interface for collaborative filtering
|
57 |
+
def recommend_movies_cf(user_id):
|
58 |
+
try:
|
59 |
+
user_id = int(user_id)
|
60 |
+
except ValueError:
|
61 |
+
return "Please enter a valid user ID (integer)."
|
62 |
+
|
63 |
+
if user_id not in user_item_matrix.index:
|
64 |
+
return f"User ID {user_id} not found in the dataset."
|
65 |
+
|
66 |
+
recommendations = get_cf_recommendations(user_id)
|
67 |
format_string = "{:>5.2f} {:<20}"
|
68 |
return "Score Title\n" + "\n".join([format_string.format(score, title) for title, score in recommendations])
|
69 |
|
70 |
+
# Update the existing Gradio interface
|
|
|
|
|
|
|
71 |
with gr.Blocks() as iface:
|
72 |
with gr.Tab("Content-Based Filtering"):
|
|
|
73 |
gr.Interface(fn=recommend_movies,
|
74 |
inputs=gr.Dropdown(movie_list, label=f"Select a Movie (Total movies: {total_movies}, randomly list {input_count} for demo purpose.)"),
|
75 |
outputs=[gr.Textbox(label="Recommended Movies:")],
|
|
|
77 |
description="Select a movie to get recommendations based on content filtering.")
|
78 |
|
79 |
with gr.Tab("Collaborative Filtering"):
|
80 |
+
gr.Interface(fn=recommend_movies_cf,
|
81 |
+
inputs=gr.Number(label="Enter User ID"),
|
82 |
+
outputs=[gr.Textbox(label="Recommended Movies:")],
|
83 |
+
title="Movie Recommender - Collaborative Filtering",
|
84 |
+
description="Enter a user ID to get movie recommendations based on collaborative filtering.")
|
85 |
+
|
86 |
# Launch the app
|
87 |
+
iface.launch()
|