jchoo commited on
Commit
60add22
·
verified ·
1 Parent(s): 25b5ea6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -126
app.py CHANGED
@@ -1,147 +1,92 @@
1
- import io
2
- import random
3
- from typing import List, Tuple
4
 
5
- import aiohttp
6
  import panel as pn
7
- from PIL import Image
8
- from transformers import CLIPModel, CLIPProcessor
9
 
10
- pn.extension(design="bootstrap", sizing_mode="stretch_width")
 
 
 
 
 
 
11
 
12
- ICON_URLS = {
13
- "brand-github": "https://github.com/holoviz/panel",
14
- "brand-twitter": "https://twitter.com/Panel_Org",
15
- "brand-linkedin": "https://www.linkedin.com/company/panel-org",
16
- "message-circle": "https://discourse.holoviz.org/",
17
- "brand-discord": "https://discord.gg/AXRHnJU6sP",
18
- }
19
 
 
20
 
21
- async def random_url(_):
22
- pet = random.choice(["cat", "dog"])
23
- api_url = f"https://api.the{pet}api.com/v1/images/search"
24
- async with aiohttp.ClientSession() as session:
25
- async with session.get(api_url) as resp:
26
- return (await resp.json())[0]["url"]
27
 
28
 
29
- @pn.cache
30
- def load_processor_model(
31
- processor_name: str, model_name: str
32
- ) -> Tuple[CLIPProcessor, CLIPModel]:
33
- processor = CLIPProcessor.from_pretrained(processor_name)
34
- model = CLIPModel.from_pretrained(model_name)
35
- return processor, model
36
 
 
 
 
37
 
38
- async def open_image_url(image_url: str) -> Image:
39
- async with aiohttp.ClientSession() as session:
40
- async with session.get(image_url) as resp:
41
- return Image.open(io.BytesIO(await resp.read()))
42
 
 
 
 
 
 
43
 
44
- def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
45
- processor, model = load_processor_model(
46
- "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
 
47
  )
48
- inputs = processor(
49
- text=class_items,
50
- images=[image],
51
- return_tensors="pt", # pytorch tensors
 
52
  )
53
- outputs = model(**inputs)
54
- logits_per_image = outputs.logits_per_image
55
- class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
56
- return class_likelihoods[0]
57
-
58
-
59
- async def process_inputs(class_names: List[str], image_url: str):
60
- """
61
- High level function that takes in the user inputs and returns the
62
- classification results as panel objects.
63
- """
64
- try:
65
- main.disabled = True
66
- if not image_url:
67
- yield "##### ⚠️ Provide an image URL"
68
- return
69
-
70
- yield "##### ⚙ Fetching image and running model..."
71
- try:
72
- pil_img = await open_image_url(image_url)
73
- img = pn.pane.Image(pil_img, height=400, align="center")
74
- except Exception as e:
75
- yield f"##### 😔 Something went wrong, please try a different URL!"
76
- return
77
-
78
- class_items = class_names.split(",")
79
- class_likelihoods = get_similarity_scores(class_items, pil_img)
80
 
81
- # build the results column
82
- results = pn.Column("##### 🎉 Here are the results!", img)
83
 
84
- for class_item, class_likelihood in zip(class_items, class_likelihoods):
85
- row_label = pn.widgets.StaticText(
86
- name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
87
- )
88
- row_bar = pn.indicators.Progress(
89
- value=int(class_likelihood * 100),
90
- sizing_mode="stretch_width",
91
- bar_color="secondary",
92
- margin=(0, 10),
93
- design=pn.theme.Material,
94
- )
95
- results.append(pn.Column(row_label, row_bar))
96
- yield results
97
- finally:
98
- main.disabled = False
99
-
100
-
101
- # create widgets
102
- randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
103
-
104
- image_url = pn.widgets.TextInput(
105
- name="Image URL to classify",
106
- value=pn.bind(random_url, randomize_url),
107
- )
108
- class_names = pn.widgets.TextInput(
109
- name="Comma separated class names",
110
- placeholder="Enter possible class names, e.g. cat, dog",
111
- value="cat, dog, parrot",
112
- )
113
 
114
- input_widgets = pn.Column(
115
- "##### 😊 Click randomize or paste a URL to start classifying!",
116
- pn.Row(image_url, randomize_url),
117
- class_names,
118
- )
119
 
120
- # add interactivity
121
- interactive_result = pn.panel(
122
- pn.bind(process_inputs, image_url=image_url, class_names=class_names),
123
- height=600,
124
- )
125
 
126
- # add footer
127
- footer_row = pn.Row(pn.Spacer(), align="center")
128
- for icon, url in ICON_URLS.items():
129
- href_button = pn.widgets.Button(icon=icon, width=35, height=35)
130
- href_button.js_on_click(code=f"window.open('{url}')")
131
- footer_row.append(href_button)
132
- footer_row.append(pn.Spacer())
133
-
134
- # create dashboard
135
- main = pn.WidgetBox(
136
- input_widgets,
137
- interactive_result,
138
- footer_row,
139
  )
140
 
141
- title = "Panel Demo - Image Classification"
142
- pn.template.BootstrapTemplate(
143
- title=title,
144
- main=main,
145
- main_max_width="min(50%, 698px)",
146
- header_background="#F08080",
147
- ).servable(title=title)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import panel and vega datasets
 
 
2
 
 
3
  import panel as pn
4
+ import vega_datasets
 
5
 
6
+ import pandas as pd
7
+ import altair as alt
8
+ # import numpy as np
9
+ # import pprint
10
+ import datetime as dt
11
+ from vega_datasets import data
12
+ # import matplotlib.pyplot as plt
13
 
 
 
 
 
 
 
 
14
 
15
+ df2=pd.read_csv("https://raw.githubusercontent.com/dallascard/SI649_public/main/altair_hw3/approval_topline.csv")
16
 
17
+ df2['timestamp']=pd.to_datetime(df2['timestamp'])
18
+ df2=pd.melt(df2, id_vars=['president', 'subgroup', 'timestamp'], value_vars=['approve','disapprove']).rename(columns={'variable':'choice', 'value':'rate'})
 
 
 
 
19
 
20
 
21
+ # Enable Panel extensions
22
+ # pn.extension()
23
+ # pn.extension('vega', 'tabulator')
24
+ pn.extension(design='bootstrap')
25
+ pn.extension('vega')
 
 
26
 
27
+ template = pn.template.BootstrapTemplate(
28
+ title='SI649 Altair3',
29
+ )
30
 
31
+ # Define a function to create and return a plot
32
+ def create_plot(subgroup, date_range, moving_av_window):
 
 
33
 
34
+ # Apply any required transformations to the data in pandas)
35
+ df2_approve = df2[df2['choice'] == 'approve']
36
+ filtered_df = df2_approve[df2_approve['subgroup'] == subgroup]
37
+ filtered_df = filtered_df[(filtered_df['timestamp'].dt.date >= date_range[0]) & (filtered_df['timestamp'].dt.date <= date_range[1])]
38
+ filtered_df['mov_avg'] = filtered_df['rate'].rolling(window=moving_av_window).mean().shift(-moving_av_window//2)
39
 
40
+ # Line chart
41
+ line_chart = alt.Chart(filtered_df).mark_line(color='red', size=2).encode(
42
+ x='timestamp:T',
43
+ y='mov_avg:Q'
44
  )
45
+
46
+ # Scatter plot with individual polls
47
+ scatter_plot = alt.Chart(filtered_df).mark_point(color='grey', size=2, opacity=0.7).encode(
48
+ x='timestamp:T',
49
+ y='rate:Q'
50
  )
51
+
52
+ # Put them togetehr
53
+ plot = scatter_plot + line_chart
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
+ # Return the combined chart
56
+ return pn.pane.Vega(plot)
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
+ # # Create the selection widget
60
+ select = pn.widgets.Select(name='Select', options=['All polls', 'Adults', 'Voters'])
 
 
 
61
 
 
 
 
 
 
62
 
63
+ # # Create the slider for the date range
64
+ date_range_slider = pn.widgets.DateRangeSlider(
65
+ name='Date Range Slider',
66
+ start=df2['timestamp'].dt.date.min(), end=df2['timestamp'].dt.date.max(),
67
+ value=(df2['timestamp'].dt.date.min(), df2['timestamp'].dt.date.max()),
68
+ step=1
 
 
 
 
 
 
 
69
  )
70
 
71
+
72
+ # # Create the slider for the moving average window
73
+ moving_av_slider = pn.widgets.IntSlider(name='Moving Average Window', start=1, end=100, value=1)
74
+
75
+
76
+ # Bind the widgets to the create_plot function
77
+ final = pn.Row(pn.bind(create_plot,
78
+ subgroup=select,
79
+ date_range=date_range_slider,
80
+ moving_av_window=moving_av_slider))
81
+
82
+
83
+ # # Combine everything in a Panel Column to create an app
84
+ maincol=pn.Column()
85
+ maincol.append(final)
86
+ maincol.append(select)
87
+ maincol.append(date_range_slider)
88
+ maincol.append(moving_av_slider)
89
+ template.main.append(maincol)
90
+
91
+ # # set the app to be servable
92
+ template.serverable(title='SI649 Altair3')