jchoo commited on
Commit
5653dda
·
verified ·
1 Parent(s): 06990e4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -94
app.py CHANGED
@@ -1,117 +1,80 @@
1
- # load up the libraries
 
2
  import panel as pn
3
- import pandas as pd
4
- import altair as alt
5
- from vega_datasets import data
6
 
7
- # we want to use bootstrap/template, tell Panel to load up what we need
8
- pn.extension(design='bootstrap')
9
 
10
- # we want to use vega, tell Panel to load up what we need
11
- pn.extension('vega')
 
 
 
12
 
13
- # create a basic template using bootstrap
14
  template = pn.template.BootstrapTemplate(
15
- title='SI649 Walkthrough',
16
  )
17
 
18
- # the main column will hold our key content
19
- maincol = pn.Column()
20
-
21
- # add some markdown to the main column
22
- maincol.append("# Markdown Title")
23
- maincol.append("I can format in cool ways. Like **bold** or *italics* or ***both*** or ~~strikethrough~~ or `code` or [links](https://panel.holoviz.org)")
24
- maincol.append("I am writing a link [to the streamlit documentation page](https://docs.streamlit.io/en/stable/api.html)")
25
- maincol.append('![alt text](https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Irises-Vincent_van_Gogh.jpg/314px-Irises-Vincent_van_Gogh.jpg)')
26
-
27
- # load up a dataframe and show it in the main column
28
- cars_url = "https://raw.githubusercontent.com/altair-viz/vega_datasets/master/vega_datasets/_data/cars.json"
29
- cars = pd.read_json(cars_url)
30
- temps = data.seattle_weather()
31
 
32
- maincol.append(temps.head(10))
 
 
 
33
 
34
- # create a basic chart
35
- hp_mpg = alt.Chart(cars).mark_circle(size=80).encode(
36
- x='Horsepower:Q',
37
- y='Miles_per_Gallon:Q',
38
- color='Origin:N'
39
- )
40
-
41
- # dispaly it in the main column
42
- # maincol.append(hp_mpg)
43
 
44
- # create a basic slider
45
- simpleslider = pn.widgets.IntSlider(name='Simple Slider', start=0, end=100, value=0)
 
 
 
46
 
47
- # generate text based on slider value
48
- def square(x):
49
- return f'{x} squared is {x**2}'
 
 
 
50
 
 
 
51
 
52
- # bind the slider to the function and hold the output in a row
53
- row = pn.Column(pn.bind(square,simpleslider))
54
 
55
- # add both slider and row
56
- maincol.append(simpleslider)
57
- maincol.append(row)
 
 
 
 
58
 
59
- # variable to track state of visualization
60
- flip = False
61
 
62
- # function to either return the vis or a message
63
- def makeChartVisible(val):
64
- global flip # grab the variable outside the function
65
- if (flip == True):
66
- flip = not flip # flip to False
67
- return pn.pane.Vega(hp_mpg) # return the vis
68
- else:
69
- flip = not flip # flip to true and return text
70
- return pn.panel("Click the button to see the chart")
71
-
72
- # add a button and then create the binding
73
- btn = pn.widgets.Button(name='Click me')
74
- row = pn.Row(pn.bind(makeChartVisible, btn))
75
-
76
- # add button and new row to main column
77
- maincol.append(btn)
78
- maincol.append(row)
79
-
80
- # create a base chart
81
- basechart = alt.Chart(cars).mark_circle(size=80,opacity=0.5).encode(
82
- x='Horsepower:Q',
83
- y='Acceleration:Q',
84
- color="Origin:N"
85
- )
86
 
87
- # create something to hold the base chart
88
- currentoption = pn.panel(basechart)
89
 
90
- # create a selection widget
91
- select = pn.widgets.Select(name='Select', options=['Horsepower','Acceleration','Miles_per_Gallon'])
 
 
 
92
 
93
- # create a function to modify the basechart that is being
94
- # held in currentoption
95
- def changeOption(val):
96
- # grab what's there now
97
- chrt = currentoption.object
98
- # change the encoding based on val
99
- chrt = chrt.encode(
100
- y=val+":Q"
101
- )
102
- # replace old chart in currentoption with new one
103
- currentoption.object = chrt
104
 
105
- # append the selection
 
 
106
  maincol.append(select)
107
- # append the binding (in thise case nothing is being returned by changeOption, so...)
108
- chartchange = pn.Row(pn.bind(changeOption, select))
109
- # ... we need to also add the chart
110
- maincol.append(chartchange)
111
- maincol.append(currentoption)
112
-
113
- # add the main column to the template
114
  template.main.append(maincol)
115
 
116
- # Indicate that the template object is the "application" and serve it
117
- template.servable(title="SI649 Walkthrough")
 
1
+ # Import panel and vega datasets
2
+
3
  import panel as pn
4
+ import vega_datasets
5
+
6
+ df2=pd.read_csv("https://raw.githubusercontent.com/dallascard/SI649_public/main/altair_hw3/approval_topline.csv")
7
 
8
+ df2_approve = df2[df2['choice'] == 'approve']
 
9
 
10
+ # Enable Panel extensions
11
+ pn.extension()
12
+ # pn.extension('vega', 'tabulator')
13
+ # pn.extension(design='bootstrap')
14
+ # pn.extension('vega')
15
 
 
16
  template = pn.template.BootstrapTemplate(
17
+ title='SI649 Altair3',
18
  )
19
 
20
+ # Define a function to create and return a plot
21
+ def create_plot(subgroup, date_range, moving_av_window):
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ # Apply any required transformations to the data in pandas)
24
+ filtered_df = df2_approve[df2_approve['subgroup'] == subgroup]
25
+ filtered_df = filtered_df[(filtered_df['timestamp'].dt.date >= date_range[0]) & (filtered_df['timestamp'].dt.date <= date_range[1])]
26
+ filtered_df['mov_avg'] = filtered_df['rate'].rolling(window=moving_av_window).mean().shift(moving_av_window//2)
27
 
28
+ # Line chart
29
+ line_chart = alt.Chart(filtered_df).mark_line(color='red', size=2).encode(
30
+ x='timestamp:T',
31
+ y='mov_avg:Q'
32
+ )
 
 
 
 
33
 
34
+ # Scatter plot with individual polls
35
+ scatter_plot = alt.Chart(filtered_df).mark_point(color='grey', size=2, opacity=0.7).encode(
36
+ x='timestamp:T',
37
+ y='rate:Q'
38
+ )
39
 
40
+ # Put them togetehr
41
+ plot = scatter_plot + line_chart
42
+
43
+ # Return the combined chart
44
+ return plot
45
+
46
 
47
+ # # Create the selection widget
48
+ select = pn.widgets.Select(name='Select', options=['All polls', 'Adults', 'Voters'])
49
 
 
 
50
 
51
+ # # Create the slider for the date range
52
+ date_range_slider = pn.widgets.DateRangeSlider(
53
+ name='Date Range Slider',
54
+ start=df2_approve['timestamp'].dt.date.min(), end=df2_approve['timestamp'].dt.date.max(),
55
+ value=(df2_approve['timestamp'].dt.date.min(), df2_approve['timestamp'].dt.date.max()),
56
+ step=1
57
+ )
58
 
 
 
59
 
60
+ # # Create the slider for the moving average window
61
+ moving_av_slider = pn.widgets.IntSlider(name='Moving Average Window', start=1, end=100, value=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
 
 
63
 
64
+ # Bind the widgets to the create_plot function
65
+ final = pn.Row(pn.bind(create_plot,
66
+ subgroup=select,
67
+ date_range=date_range_slider,
68
+ moving_av_window=moving_av_slider))
69
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
+ # # Combine everything in a Panel Column to create an app
72
+ maincol=pn.Column()
73
+ maincol.append(final)
74
  maincol.append(select)
75
+ maincol.append(date_range_slider)
76
+ maincol.append(moving_av_slider)
 
 
 
 
 
77
  template.main.append(maincol)
78
 
79
+ # # set the app to be servable
80
+ template.serverable(title='SI649 Altair3')