jchoo commited on
Commit
762c48d
·
verified ·
1 Parent(s): 1076b14

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -98
app.py CHANGED
@@ -1,117 +1,74 @@
1
- # load up the libraries
2
- import panel as pn
3
- import pandas as pd
4
- import altair as alt
5
- from vega_datasets import data
6
-
7
- # we want to use bootstrap/template, tell Panel to load up what we need
8
- pn.extension(design='bootstrap')
9
 
10
- # we want to use vega, tell Panel to load up what we need
11
- pn.extension('vega')
12
 
13
- # create a basic template using bootstrap
 
14
  template = pn.template.BootstrapTemplate(
15
- title='SI649 Walkthrough',
16
  )
17
 
18
- # the main column will hold our key content
19
- maincol = pn.Column()
20
-
21
- # add some markdown to the main column
22
- maincol.append("# Markdown Title")
23
- maincol.append("I can format in cool ways. Like **bold** or *italics* or ***both*** or ~~strikethrough~~ or `code` or [links](https://panel.holoviz.org)")
24
- maincol.append("I am writing a link [to the streamlit documentation page](https://docs.streamlit.io/en/stable/api.html)")
25
- maincol.append('![alt text](https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Irises-Vincent_van_Gogh.jpg/314px-Irises-Vincent_van_Gogh.jpg)')
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
- # load up a dataframe and show it in the main column
28
- cars_url = "https://raw.githubusercontent.com/altair-viz/vega_datasets/master/vega_datasets/_data/cars.json"
29
- cars = pd.read_json(cars_url)
30
- temps = data.seattle_weather()
 
31
 
32
- maincol.append(temps.head(10))
33
 
34
- # create a basic chart
35
- hp_mpg = alt.Chart(cars).mark_circle(size=80).encode(
36
- x='Horsepower:Q',
37
- y='Miles_per_Gallon:Q',
38
- color='Origin:N'
39
- )
40
 
41
- # dispaly it in the main column
42
- # maincol.append(hp_mpg)
 
43
 
44
- # create a basic slider
45
- simpleslider = pn.widgets.IntSlider(name='Simple Slider', start=0, end=100, value=0)
46
 
47
- # generate text based on slider value
48
- def square(x):
49
- return f'{x} squared is {x**2}'
 
 
 
 
 
50
 
51
 
52
- # bind the slider to the function and hold the output in a row
53
- row = pn.Column(pn.bind(square,simpleslider))
54
 
55
- # add both slider and row
56
- maincol.append(simpleslider)
57
- maincol.append(row)
58
 
59
- # variable to track state of visualization
60
- flip = False
 
61
 
62
- # function to either return the vis or a message
63
- def makeChartVisible(val):
64
- global flip # grab the variable outside the function
65
- if (flip == True):
66
- flip = not flip # flip to False
67
- return pn.pane.Vega(hp_mpg) # return the vis
68
- else:
69
- flip = not flip # flip to true and return text
70
- return pn.panel("Click the button to see the chart")
71
-
72
- # add a button and then create the binding
73
- btn = pn.widgets.Button(name='Click me')
74
- row = pn.Row(pn.bind(makeChartVisible, btn))
75
-
76
- # add button and new row to main column
77
- maincol.append(btn)
78
- maincol.append(row)
79
-
80
- # create a base chart
81
- basechart = alt.Chart(cars).mark_circle(size=80,opacity=0.5).encode(
82
- x='Horsepower:Q',
83
- y='Acceleration:Q',
84
- color="Origin:N"
85
- )
86
 
87
- # create something to hold the base chart
88
- currentoption = pn.panel(basechart)
89
 
90
- # create a selection widget
91
- select = pn.widgets.Select(name='Select', options=['Horsepower','Acceleration','Miles_per_Gallon'])
92
 
93
- # create a function to modify the basechart that is being
94
- # held in currentoption
95
- def changeOption(val):
96
- # grab what's there now
97
- chrt = currentoption.object
98
- # change the encoding based on val
99
- chrt = chrt.encode(
100
- y=val+":Q"
101
- )
102
- # replace old chart in currentoption with new one
103
- currentoption.object = chrt
104
-
105
- # append the selection
106
- maincol.append(select)
107
- # append the binding (in thise case nothing is being returned by changeOption, so...)
108
- chartchange = pn.Row(pn.bind(changeOption, select))
109
- # ... we need to also add the chart
110
- maincol.append(chartchange)
111
- maincol.append(currentoption)
112
-
113
- # add the main column to the template
114
- template.main.append(maincol)
115
-
116
- # Indicate that the template object is the "application" and serve it
117
- template.servable(title="SI649 Walkthrough")
 
1
+ # Import panel and vega datasets
 
 
 
 
 
 
 
2
 
3
+ import panel as pn
4
+ import vega_datasets
5
 
6
+ # Enable Panel extensions
7
+ pn.extension()
8
  template = pn.template.BootstrapTemplate(
9
+ title='SI649 Lab7',
10
  )
11
 
12
+ # Define a function to create and return a plot
13
+ def create_plot(subgroup):
14
+ # def create_plot(subgroup, date_range, moving_av_window):
15
+
16
+ # Apply any required transformations to the data in pandas)
17
+ filtered_df = df2_approve[df2_approve['subgroup'] == subgroup]
18
+ # filtered_df = filtered_df[(filtered_df['timestamp'] >= date_range[0]) & (filtered_df['timestamp'] <= date_range[1])]
19
+ # filtered_df['Smoothed_Rate'] = filtered_df['rate'].rolling(window=moving_av_window, min_periods=1).mean().shift()
20
+
21
+ # Line chart
22
+ # line_chart = alt.Chart(filtered_df).mark_line(color='red').encode(
23
+ # x='timestamp:T',
24
+ # y='Smoothed_Rate:Q'
25
+ # )
26
+
27
+ # Scatter plot with individual polls
28
+ scatter_plot = alt.Chart(filtered_df).mark_point(color='gray', size=2, opacity=0.7).encode(
29
+ x='timestamp:T',
30
+ y='rate:Q'
31
+ )
32
 
33
+ # Put them togetehr
34
+ plot = scatter_plot
35
+
36
+ # Return the combined chart
37
+ return plot
38
 
39
+ # date_range = ('2021-04-01', '2023-01-01')
40
 
41
+ # create_plot('All polls', date_range, 3)
42
+
 
 
 
 
43
 
44
+ # # Create the selection widget
45
+ # subgroup_widget = pn.widgets.Select(options=['All polls', 'Adults', 'Voters'], name='Subgroup')
46
+ select = pn.widgets.Select(name='Select', options=['All polls', 'Adults', 'Voters'])
47
 
 
 
48
 
49
+ # # Create the slider for the date range
50
+ # date_range_slider = pn.widgets.DateRangeSlider(name='Date Range')
51
+ # date_range_slider = pn.widgets.DateRangeSlider(
52
+ # name='Date Range Slider',
53
+ # start=dt.datetime(2017, 1, 1), end=dt.datetime(2019, 1, 1),
54
+ # value=(dt.datetime(2017, 1, 1), dt.datetime(2018, 1, 10)),
55
+ # step=2
56
+ # )
57
 
58
 
59
+ # # Create the slider for the moving average window
60
+ # moving_av_slider = pn.widgets.IntSlider(name='Moving Average Window', start=1, end=10, value=3)
61
 
62
+ # create_plot(subgroup_widget, date_range_slider, moving_av_slider)
 
 
63
 
64
+ # Bind the widgets to the create_plot function
65
+ final = pn.bind(create_plot,select)
66
+ template.main.append(final)
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
 
 
69
 
70
+ # # Combine everything in a Panel Column to create an app
71
+ # app = pn.Column(subgroup_widget, date_range_slider, moving_av_slider, update_plot)
72
 
73
+ # # set the app to be servable
74
+ # app.servable()