|
|
|
|
|
|
|
import gradio as gr |
|
|
|
import torch |
|
|
|
|
|
|
|
device = ( |
|
"cuda" |
|
if torch.cuda.is_available() |
|
else "mps" |
|
if torch.backends.mps.is_available() |
|
else "cpu" |
|
) |
|
|
|
from transformers import AutoTokenizer |
|
from transformers import AutoModelForCausalLM |
|
from transformers import StoppingCriteria |
|
from transformers import StoppingCriteriaList |
|
from transformers import TextIteratorStreamer |
|
|
|
from threading import Thread |
|
|
|
MODEL_ID = "togethercomputer/RedPajama-INCITE-Chat-3B-v1" |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.float16) |
|
model = model.to(device) |
|
|
|
class StopOnTokens(StoppingCriteria): |
|
""" |
|
Class used `stopping_criteria` in `generate_kwargs` that provides an additional |
|
way of stopping the generation loop (if this class returns `True` on a token, |
|
the generation is stopped)). |
|
""" |
|
|
|
|
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
stop_ids = [29, 0] |
|
for stop_id in stop_ids: |
|
if input_ids[0][-1] == stop_id: |
|
return True |
|
return False |
|
|
|
def predict(message, history): |
|
|
|
history_transformer_format = history + [[message, ""]] |
|
stop = StopOnTokens() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
messages = "".join( |
|
["".join( |
|
["\n<human>:"+item[0], "\n<bot>:"+item[1]] |
|
) |
|
for item in history_transformer_format] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=30., skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=1000, |
|
temperature=1.0, |
|
pad_token_id=tokenizer.eos_token_id, |
|
num_beams=1, |
|
stopping_criteria=StoppingCriteriaList([stop]) |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
partial_message = "" |
|
for new_token in streamer: |
|
|
|
|
|
if new_token != '<': |
|
partial_message += new_token |
|
yield partial_message |
|
|
|
|
|
gr.ChatInterface(predict).queue().launch(debug=True) |
|
|