jclian91 commited on
Commit
5967c79
·
verified ·
1 Parent(s): 89f9256

create app.py

Browse files
Files changed (1) hide show
  1. app.py +108 -0
app.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from transformers import AutoModel, AutoTokenizer
4
+
5
+ # load model and tokenizer
6
+ tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True)
7
+ model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True)
8
+
9
+
10
+ def chunk_by_sentences(input_text: str, tokenizer: callable, separator: str):
11
+ inputs = tokenizer(input_text, return_tensors='pt', return_offsets_mapping=True)
12
+ punctuation_mark_id = tokenizer.convert_tokens_to_ids(separator)
13
+ print(f"separator: {separator}, punctuation_mark_id: {punctuation_mark_id}")
14
+ sep_id = tokenizer.eos_token_id
15
+ token_offsets = inputs['offset_mapping'][0]
16
+ token_ids = inputs['input_ids'][0]
17
+ chunk_positions = [
18
+ (i, int(start + 1))
19
+ for i, (token_id, (start, end)) in enumerate(zip(token_ids, token_offsets))
20
+ if token_id == punctuation_mark_id
21
+ and (
22
+ token_offsets[i + 1][0] - token_offsets[i][1] >= 0
23
+ or token_ids[i + 1] == sep_id
24
+ )
25
+ ]
26
+ chunks = [
27
+ input_text[x[1]: y[1]]
28
+ for x, y in zip([(1, 0)] + chunk_positions[:-1], chunk_positions)
29
+ ]
30
+ span_annotations = [
31
+ (x[0], y[0]) for (x, y) in zip([(1, 0)] + chunk_positions[:-1], chunk_positions)
32
+ ]
33
+ return chunks, span_annotations
34
+
35
+
36
+ def late_chunking(model_output, span_annotation, max_length=None):
37
+ token_embeddings = model_output[0]
38
+ outputs = []
39
+ for embeddings, annotations in zip(token_embeddings, span_annotation):
40
+ if max_length is not None:
41
+ annotations = [
42
+ (start, min(end, max_length - 1))
43
+ for (start, end) in annotations
44
+ if start < (max_length - 1)
45
+ ]
46
+ pooled_embeddings = [
47
+ embeddings[start:end].sum(dim=0) / (end - start)
48
+ for start, end in annotations
49
+ if (end - start) >= 1
50
+ ]
51
+ pooled_embeddings = [
52
+ embedding.detach().cpu().numpy() for embedding in pooled_embeddings
53
+ ]
54
+ outputs.append(pooled_embeddings)
55
+
56
+ return outputs
57
+
58
+
59
+ def embedding_retriever(query_input, text_input, separator):
60
+ chunks, span_annotations = chunk_by_sentences(text_input, tokenizer, separator)
61
+ print(f"chunks: ", chunks)
62
+ inputs = tokenizer(text_input, return_tensors='pt', max_length=4096, truncation=True)
63
+ model_output = model(**inputs)
64
+ late_chunking_embeddings = late_chunking(model_output, [span_annotations])[0]
65
+
66
+ query_inputs = tokenizer(query_input, return_tensors='pt')
67
+ query_embedding = model(**query_inputs)[0].detach().cpu().numpy().mean(axis=1)
68
+
69
+ traditional_chunking_embeddings = model.encode(chunks)
70
+
71
+ cos_sim = lambda x, y: np.dot(x, y) / (np.linalg.norm(x) * np.linalg.norm(y))
72
+
73
+ naive_embedding_score_dict = {}
74
+ late_chunking_embedding_score_dict = {}
75
+ for chunk, trad_embed, new_embed in zip(chunks, traditional_chunking_embeddings, late_chunking_embeddings):
76
+ # 计算query和每个chunk的embedding的cosine similarity,相似度分数转化为float类型
77
+ naive_embedding_score_dict[chunk] = round(cos_sim(query_embedding, trad_embed).tolist()[0], 4)
78
+ late_chunking_embedding_score_dict[chunk] = round(cos_sim(query_embedding, new_embed).tolist()[0], 4)
79
+
80
+ naive_embedding_order = sorted(
81
+ naive_embedding_score_dict.items(), key=lambda x: x[1], reverse=True
82
+ )
83
+ late_chunking_order = sorted(
84
+ late_chunking_embedding_score_dict.items(), key=lambda x: x[1], reverse=True
85
+ )
86
+
87
+ df_data = []
88
+ for i in range(len(naive_embedding_order)):
89
+ df_data.append([i+1, naive_embedding_order[i][0], naive_embedding_order[i][1],
90
+ late_chunking_order[i][0], late_chunking_order[i][1]])
91
+ return df_data
92
+
93
+
94
+ if __name__ == '__main__':
95
+ with gr.Blocks() as demo:
96
+ query = gr.TextArea(lines=1, placeholder="your query", label="Query")
97
+ text = gr.TextArea(lines=3, placeholder="your text", label="Text")
98
+ sep = gr.TextArea(lines=1, placeholder="your separator", label="Separator")
99
+ submit = gr.Button("Submit")
100
+ result = gr.DataFrame(headers=["order", "naive_embedding_text", "naive_embedding_score",
101
+ "late_chunking_text", "late_chunking_score"],
102
+ label="Retrieve Result",
103
+ wrap=True)
104
+
105
+ submit.click(fn=embedding_retriever,
106
+ inputs=[query, text, sep],
107
+ outputs=[result])
108
+ demo.launch()