Spaces:
Runtime error
Runtime error
Initial video commit
Browse files
app.py
CHANGED
@@ -142,7 +142,8 @@ def optimize_network(
|
|
142 |
neuron,
|
143 |
class_token,
|
144 |
maximize,
|
145 |
-
display_rate
|
|
|
146 |
):
|
147 |
global itt
|
148 |
itt = 0
|
@@ -210,7 +211,7 @@ def optimize_network(
|
|
210 |
if display_augs:
|
211 |
aug_grid = torchvision.utils.make_grid(cutouts, nrow=math.ceil(math.sqrt(cutn)))
|
212 |
display.display(TF.to_pil_image(aug_grid.clamp(0, 1)))
|
213 |
-
if save_progress_video
|
214 |
video_writer.append_data(np.asarray(image))
|
215 |
|
216 |
if anneal_lr:
|
@@ -240,13 +241,13 @@ def inference(
|
|
240 |
num_iterations = int(num_iterations)
|
241 |
neuron = int(neuron)
|
242 |
display_rate = int(display_rate)
|
243 |
-
|
244 |
opt_type = 'MADGRAD'
|
245 |
seed = 20
|
246 |
save_progress_video = True
|
247 |
timestring = time.strftime('%Y%m%d%H%M%S')
|
248 |
if save_progress_video:
|
249 |
-
video_writer = imageio.get_writer(f'
|
250 |
|
251 |
# Begin optimization / generation
|
252 |
gc.collect()
|
@@ -261,17 +262,18 @@ def inference(
|
|
261 |
neuron,
|
262 |
class_token,
|
263 |
maximize,
|
264 |
-
display_rate
|
|
|
265 |
)
|
266 |
|
267 |
out.save(f'dip_{timestring}.png', quality=100)
|
268 |
if save_progress_video:
|
269 |
video_writer.close()
|
270 |
-
return out
|
271 |
|
272 |
iface = gr.Interface(fn=inference,
|
273 |
inputs=["number", "number", "number", "number", "number",
|
274 |
gr.inputs.Checkbox(default=False, label="class_token"),
|
275 |
gr.inputs.Checkbox(default=True, label="maximise"),
|
276 |
"number"],
|
277 |
-
outputs="image").launch()
|
|
|
142 |
neuron,
|
143 |
class_token,
|
144 |
maximize,
|
145 |
+
display_rate,
|
146 |
+
video_writer
|
147 |
):
|
148 |
global itt
|
149 |
itt = 0
|
|
|
211 |
if display_augs:
|
212 |
aug_grid = torchvision.utils.make_grid(cutouts, nrow=math.ceil(math.sqrt(cutn)))
|
213 |
display.display(TF.to_pil_image(aug_grid.clamp(0, 1)))
|
214 |
+
if save_progress_video:
|
215 |
video_writer.append_data(np.asarray(image))
|
216 |
|
217 |
if anneal_lr:
|
|
|
241 |
num_iterations = int(num_iterations)
|
242 |
neuron = int(neuron)
|
243 |
display_rate = int(display_rate)
|
244 |
+
|
245 |
opt_type = 'MADGRAD'
|
246 |
seed = 20
|
247 |
save_progress_video = True
|
248 |
timestring = time.strftime('%Y%m%d%H%M%S')
|
249 |
if save_progress_video:
|
250 |
+
video_writer = imageio.get_writer(f'video.mp4', mode='I', fps=30, codec='libx264', quality=7, pixelformat='yuv420p')
|
251 |
|
252 |
# Begin optimization / generation
|
253 |
gc.collect()
|
|
|
262 |
neuron,
|
263 |
class_token,
|
264 |
maximize,
|
265 |
+
display_rate,
|
266 |
+
video_writer = video_writer
|
267 |
)
|
268 |
|
269 |
out.save(f'dip_{timestring}.png', quality=100)
|
270 |
if save_progress_video:
|
271 |
video_writer.close()
|
272 |
+
return out, 'video.mp4'
|
273 |
|
274 |
iface = gr.Interface(fn=inference,
|
275 |
inputs=["number", "number", "number", "number", "number",
|
276 |
gr.inputs.Checkbox(default=False, label="class_token"),
|
277 |
gr.inputs.Checkbox(default=True, label="maximise"),
|
278 |
"number"],
|
279 |
+
outputs=["image","video"]).launch()
|