jcmc commited on
Commit
97adf14
·
1 Parent(s): 74cb426

Initial video commit

Browse files
Files changed (1) hide show
  1. app.py +9 -7
app.py CHANGED
@@ -142,7 +142,8 @@ def optimize_network(
142
  neuron,
143
  class_token,
144
  maximize,
145
- display_rate = 20
 
146
  ):
147
  global itt
148
  itt = 0
@@ -210,7 +211,7 @@ def optimize_network(
210
  if display_augs:
211
  aug_grid = torchvision.utils.make_grid(cutouts, nrow=math.ceil(math.sqrt(cutn)))
212
  display.display(TF.to_pil_image(aug_grid.clamp(0, 1)))
213
- if save_progress_video and itt > 15:
214
  video_writer.append_data(np.asarray(image))
215
 
216
  if anneal_lr:
@@ -240,13 +241,13 @@ def inference(
240
  num_iterations = int(num_iterations)
241
  neuron = int(neuron)
242
  display_rate = int(display_rate)
243
-
244
  opt_type = 'MADGRAD'
245
  seed = 20
246
  save_progress_video = True
247
  timestring = time.strftime('%Y%m%d%H%M%S')
248
  if save_progress_video:
249
- video_writer = imageio.get_writer(f'dip_{timestring}.mp4', mode='I', fps=30, codec='libx264', quality=7, pixelformat='yuv420p')
250
 
251
  # Begin optimization / generation
252
  gc.collect()
@@ -261,17 +262,18 @@ def inference(
261
  neuron,
262
  class_token,
263
  maximize,
264
- display_rate
 
265
  )
266
 
267
  out.save(f'dip_{timestring}.png', quality=100)
268
  if save_progress_video:
269
  video_writer.close()
270
- return out
271
 
272
  iface = gr.Interface(fn=inference,
273
  inputs=["number", "number", "number", "number", "number",
274
  gr.inputs.Checkbox(default=False, label="class_token"),
275
  gr.inputs.Checkbox(default=True, label="maximise"),
276
  "number"],
277
- outputs="image").launch()
 
142
  neuron,
143
  class_token,
144
  maximize,
145
+ display_rate,
146
+ video_writer
147
  ):
148
  global itt
149
  itt = 0
 
211
  if display_augs:
212
  aug_grid = torchvision.utils.make_grid(cutouts, nrow=math.ceil(math.sqrt(cutn)))
213
  display.display(TF.to_pil_image(aug_grid.clamp(0, 1)))
214
+ if save_progress_video:
215
  video_writer.append_data(np.asarray(image))
216
 
217
  if anneal_lr:
 
241
  num_iterations = int(num_iterations)
242
  neuron = int(neuron)
243
  display_rate = int(display_rate)
244
+
245
  opt_type = 'MADGRAD'
246
  seed = 20
247
  save_progress_video = True
248
  timestring = time.strftime('%Y%m%d%H%M%S')
249
  if save_progress_video:
250
+ video_writer = imageio.get_writer(f'video.mp4', mode='I', fps=30, codec='libx264', quality=7, pixelformat='yuv420p')
251
 
252
  # Begin optimization / generation
253
  gc.collect()
 
262
  neuron,
263
  class_token,
264
  maximize,
265
+ display_rate,
266
+ video_writer = video_writer
267
  )
268
 
269
  out.save(f'dip_{timestring}.png', quality=100)
270
  if save_progress_video:
271
  video_writer.close()
272
+ return out, 'video.mp4'
273
 
274
  iface = gr.Interface(fn=inference,
275
  inputs=["number", "number", "number", "number", "number",
276
  gr.inputs.Checkbox(default=False, label="class_token"),
277
  gr.inputs.Checkbox(default=True, label="maximise"),
278
  "number"],
279
+ outputs=["image","video"]).launch()