File size: 795 Bytes
8446093 0a32a5c 2a472f8 03728a5 8446093 0a32a5c 03728a5 d8f3530 8446093 0a32a5c 0506c40 0a32a5c 8446093 0a32a5c 6f2f308 0506c40 8446093 2a472f8 fb5c2f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import gradio as gr
from transformers import AutoModel
from PIL import Image
import torch
import os
from huggingface_hub import login
# Load the model
model = AutoModel.from_pretrained("jcsagar/CXR-LLAVA-v2", trust_remote_code=True)
model = model.to("cuda")
# Define the function to generate the report
def generate_report(image):
image = Image.open(image).convert("RGB")
response = model.write_radiologic_report(image)
return response
# Create the Gradio interface
interface = gr.Interface(
fn=generate_report,
inputs=gr.Image(type="filepath", label="Upload Image"),
outputs=gr.Textbox(label="Report"),
title="CXR Report Creator",
description="Upload an image to use with the CXR-LLAVA-v2 model."
)
# Launch the interface with API enabled
interface.launch()
|