cxr_llava / app.py
jcsagar's picture
updated
8446093
raw
history blame
584 Bytes
import gradio as gr
from transformers import pipeline
# Initialize the pipeline
pipe = pipeline("feature-extraction", model="ECOFRI/CXR-LLAVA-v2", trust_remote_code=True)
# Define a function to process inputs and return outputs
def extract_features(text):
features = pipe(text)
return features
# Create a Gradio interface
iface = gr.Interface(
fn=extract_features,
inputs="text",
outputs="json",
title="Feature Extraction Demo",
description="Enter text to extract features using the ECOFRI/CXR-LLAVA-v2 model."
)
# Launch the interface
iface.launch()