import gradio as gr | |
from transformers import pipeline | |
# Initialize the pipeline | |
pipe = pipeline("feature-extraction", model="ECOFRI/CXR-LLAVA-v2", trust_remote_code=True) | |
# Define a function to process inputs and return outputs | |
def extract_features(text): | |
features = pipe(text) | |
return features | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=extract_features, | |
inputs="text", | |
outputs="json", | |
title="Feature Extraction Demo", | |
description="Enter text to extract features using the ECOFRI/CXR-LLAVA-v2 model." | |
) | |
# Launch the interface | |
iface.launch() |