Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,146 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
theme= gr.themes.Soft(),
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
4 |
+
import librosa
|
5 |
|
6 |
+
HOME_DIR = ""
|
7 |
+
local_config_path = 'config.json'
|
8 |
+
local_preprocessor_config_path = 'preprocessor_config.json'
|
9 |
+
local_weights_path = 'pytorch_model.bin'
|
10 |
+
local_training_args_path = 'training_args.bin'
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import numpy as np
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
# Define the id2label mapping
|
18 |
+
id2label = {
|
19 |
+
0: "angry",
|
20 |
+
1: "disgust",
|
21 |
+
2: "fear",
|
22 |
+
3: "happy",
|
23 |
+
4: "neutral",
|
24 |
+
5: "sad"
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
def predict(model, feature_extractor, data, max_length, id2label):
|
29 |
+
# Extract features
|
30 |
+
inputs = feature_extractor(data, sampling_rate=16000, max_length=max_length, return_tensors='tf', padding=True, truncation=True)
|
31 |
+
torch_inputs = torch.tensor(inputs['input_values'].numpy(), dtype=torch.float32)
|
32 |
+
|
33 |
+
# Forward pass
|
34 |
+
outputs = model(input_values=torch_inputs)
|
35 |
+
|
36 |
+
# Extract logits from the output
|
37 |
+
logits = outputs
|
38 |
+
|
39 |
+
# Apply softmax to get probabilities
|
40 |
+
probabilities = F.softmax(logits, dim=-1)
|
41 |
+
|
42 |
+
# Get the predicted class index
|
43 |
+
predicted_class_idx = torch.argmax(probabilities, dim=-1).item()
|
44 |
+
predicted_label = id2label[predicted_class_idx]
|
45 |
+
#predicted_label = predicted_class_idx
|
46 |
+
|
47 |
+
return predicted_label
|
48 |
+
|
49 |
+
from transformers import Wav2Vec2Config, Wav2Vec2Model
|
50 |
+
import torch.nn as nn
|
51 |
+
from huggingface_hub import PyTorchModelHubMixin
|
52 |
+
|
53 |
+
config = Wav2Vec2Config.from_pretrained(local_config_path)
|
54 |
+
class Wav2Vec2ForSpeechClassification(nn.Module, PyTorchModelHubMixin):
|
55 |
+
def __init__(self, config):
|
56 |
+
super(Wav2Vec2ForSpeechClassification, self).__init__()
|
57 |
+
self.wav2vec2 = Wav2Vec2Model(config)
|
58 |
+
|
59 |
+
self.classifier = nn.ModuleDict({
|
60 |
+
'dense': nn.Linear(config.hidden_size, config.hidden_size),
|
61 |
+
'activation': nn.ReLU(),
|
62 |
+
'dropout': nn.Dropout(config.final_dropout),
|
63 |
+
'out_proj': nn.Linear(config.hidden_size, config.num_labels)
|
64 |
+
})
|
65 |
+
|
66 |
+
def forward(self, input_values):
|
67 |
+
outputs = self.wav2vec2(input_values)
|
68 |
+
hidden_states = outputs.last_hidden_state
|
69 |
+
|
70 |
+
x = self.classifier['dense'](hidden_states[:, 0, :])
|
71 |
+
x = self.classifier['activation'](x)
|
72 |
+
x = self.classifier['dropout'](x)
|
73 |
+
logits = self.classifier['out_proj'](x)
|
74 |
+
|
75 |
+
return logits
|
76 |
+
|
77 |
+
import json
|
78 |
+
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Processor
|
79 |
+
|
80 |
+
# Load the preprocessor configuration from the local file
|
81 |
+
with open(local_preprocessor_config_path, 'r') as file:
|
82 |
+
preprocessor_config = json.load(file)
|
83 |
+
|
84 |
+
# Initialize the preprocessor using the loaded configuration
|
85 |
+
feature_extractor = Wav2Vec2FeatureExtractor(
|
86 |
+
do_normalize=preprocessor_config["do_normalize"],
|
87 |
+
feature_extractor_type=preprocessor_config["feature_extractor_type"],
|
88 |
+
feature_size=preprocessor_config["feature_size"],
|
89 |
+
padding_side=preprocessor_config["padding_side"],
|
90 |
+
padding_value=preprocessor_config["padding_value"],
|
91 |
+
processor_class_from_name=preprocessor_config["processor_class"],
|
92 |
+
return_attention_mask=preprocessor_config["return_attention_mask"],
|
93 |
+
sampling_rate=preprocessor_config["sampling_rate"]
|
94 |
+
)
|
95 |
+
|
96 |
+
# load the newly finetuned model from huggingface repo
|
97 |
+
|
98 |
+
from huggingface_hub import hf_hub_download
|
99 |
+
|
100 |
+
model_path = hf_hub_download(
|
101 |
+
repo_id="kvilla/wav2vec-english-speech-emotion-recognition-finetuned",
|
102 |
+
filename="model_finetuned.pth"
|
103 |
+
)
|
104 |
+
|
105 |
+
# load the newly finetuned model! from local
|
106 |
+
saved_model = torch.load(model_path, map_location=torch.device('cpu'))
|
107 |
+
|
108 |
+
# Create the model with the loaded configuration
|
109 |
+
model = Wav2Vec2ForSpeechClassification(config=config)
|
110 |
+
|
111 |
+
# Load the state dictionary
|
112 |
+
model.load_state_dict(saved_model, strict=False)
|
113 |
+
|
114 |
+
print("Model initialized successfully.")
|
115 |
+
|
116 |
+
model.eval()
|
117 |
+
|
118 |
+
|
119 |
+
def recognize_emotion(audio):
|
120 |
+
# Load the audio file using librosa
|
121 |
+
#audio, _ = librosa.load(file_path, sr=16000)
|
122 |
+
sample_rate, audio_data = audio
|
123 |
+
print(audio_data)
|
124 |
+
|
125 |
+
# Ensure audio data is in floating-point format
|
126 |
+
if not np.issubdtype(audio_data.dtype, np.floating):
|
127 |
+
audio_data = audio_data.astype(np.float32)
|
128 |
+
print(audio_data)
|
129 |
+
# If you still want to process it with librosa, e.g., to change sample rate:
|
130 |
+
if sample_rate != 16000:
|
131 |
+
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
132 |
+
return predict(model, feature_extractor, audio_data, len(audio_data), id2label)
|
133 |
+
|
134 |
+
|
135 |
+
demo = gr.Blocks()
|
136 |
+
with demo:
|
137 |
theme= gr.themes.Soft(),
|
138 |
+
audio_input = gr.Audio(type="numpy",
|
139 |
+
sources=["microphone"],
|
140 |
+
show_label=True
|
141 |
+
)
|
142 |
+
text_output = gr.Textbox(label="Recognized Emotion")
|
143 |
+
|
144 |
+
# Automatically call the recognize_emotion function when audio is recorded
|
145 |
+
audio_input.stop_recording(fn=recognize_emotion, inputs=audio_input, outputs=text_output)
|
146 |
+
demo.launch(share=True)
|