File size: 1,114 Bytes
546f352
0bda39c
70af086
1587eea
70af086
c10710a
 
546f352
70af086
e2f6cfc
 
 
 
 
 
 
 
70af086
546f352
c10710a
70af086
e2f6cfc
546f352
70af086
7b2689f
70af086
 
546f352
70af086
 
e2f6cfc
546f352
67daaca
 
70af086
0387452
70af086
e2f6cfc
 
 
70af086
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
from fastai.vision.all import *
import os

# Load model
learn = load_learner('model.pkl')
labels = learn.dls.vocab

# Define label descriptions
label_descriptions = {
    0: "No DR",
    1: "Mild",
    2: "Moderate",
    3: "Severe",
    4: "Proliferative DR"
}

# Prediction function
def predict(img):
    img = PILImage.create(img)
    pred, pred_idx, probs = learn.predict(img)
    return {label_descriptions[labels[i]]: float(probs[i]) for i in range(len(labels))}

# Gradio Interface
title = "Diabetic Retinopathy Detection"
description = """Detects severity of diabetic retinopathy from a given retina image."""
article = "<p style='text-align: center'>Example article or instructions here</p>"

# Prepare examples if available
test_folder = "test"
image_paths = [os.path.join(test_folder, img) for img in os.listdir(test_folder) if img.endswith(('.png', '.jpg', '.jpeg'))]

gr.Interface(
    fn=predict,
    inputs=gr.Image(type="filepath"),
    outputs=gr.Label(num_top_classes=5),
    examples=image_paths,
    article=article,
    title=title,
    description=description,
).launch()