|
import gradio as gr |
|
from fastai.vision.all import * |
|
import skimage |
|
|
|
def get_x(r): return "/kaggle/input/aptos2019/train_images/train_images/1ae8c165fd53.png" |
|
|
|
def get_y(r): return r['diagnosis'] |
|
|
|
learn = load_learner('model.pkl') |
|
labels = learn.dls.vocab |
|
|
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
title = "Proliferative Retinopathy Detection" |
|
description = """Detects severity of diabetic retinopathy - |
|
|
|
0 - No DR |
|
|
|
1 - Mild |
|
|
|
2 - Moderate |
|
|
|
3 - Severe |
|
|
|
4 - Proliferative DR |
|
""" |
|
article="<p style='text-align: center'><a href='https://www.kaggle.com/code/josemauriciodelgado/proliferative-retinopathy' target='_blank'>Notebook</a></p>" |
|
interpretation='default' |
|
enable_queue=True |
|
|
|
gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(), |
|
outputs=gr.Label(num_top_classes=5), |
|
).launch() |