Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# Define the pipeline
|
6 |
+
@st.cache_resource
|
7 |
+
def load_pipeline():
|
8 |
+
return pipeline("image-classification", model="yangy50/garbage-classification")
|
9 |
+
|
10 |
+
pipe = load_pipeline()
|
11 |
+
|
12 |
+
# Streamlit UI
|
13 |
+
st.title("Garbage Classification App")
|
14 |
+
st.write("Upload an image to classify it as a type of garbage.")
|
15 |
+
|
16 |
+
# File uploader
|
17 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
18 |
+
|
19 |
+
if uploaded_file is not None:
|
20 |
+
# Load image
|
21 |
+
image = Image.open(uploaded_file)
|
22 |
+
|
23 |
+
# Display image
|
24 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
25 |
+
|
26 |
+
# Run inference
|
27 |
+
results = pipe(image)
|
28 |
+
|
29 |
+
# Get top prediction
|
30 |
+
top_prediction = max(results, key=lambda x: x["score"])
|
31 |
+
|
32 |
+
# Display result
|
33 |
+
st.write(f"**Predicted Class:** {top_prediction['label']}")
|
34 |
+
st.write(f"**Confidence:** {top_prediction['score']:.2f}")
|