import streamlit as st from transformers import pipeline from PIL import Image # Define the pipeline @st.cache_resource def load_pipeline(): return pipeline("image-classification", model="yangy50/garbage-classification") pipe = load_pipeline() # Streamlit UI st.title("Garbage Classification App") st.write("Upload an image to classify it as a type of garbage.") # File uploader uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Load image image = Image.open(uploaded_file) # Display image st.image(image, caption="Uploaded Image", use_column_width=True) # Run inference results = pipe(image) # Get top prediction top_prediction = max(results, key=lambda x: x["score"]) # Display result st.write(f"**Predicted Class:** {top_prediction['label']}") st.write(f"**Confidence:** {top_prediction['score']:.2f}")