Spaces:
Sleeping
Sleeping
File size: 13,669 Bytes
f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 9eff11a 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 f053717 44e2555 9eff11a 44e2555 f053717 44e2555 f053717 44e2555 f053717 9eff11a f053717 44e2555 f053717 44e2555 f053717 44e2555 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import gradio as gr
import pandas as pd
import os
import uuid
import datetime
import logging
from huggingface_hub import hf_hub_download, upload_file, list_repo_tree
from dotenv import load_dotenv
from collections import defaultdict
load_dotenv()
# Configuration
HF_INPUT_DATASET = os.getenv("HF_INPUT_DATASET")
HF_INPUT_DATASET_PATH = os.getenv("HF_INPUT_DATASET_PATH")
HF_INPUT_DATASET_ID_COLUMN = os.getenv("HF_INPUT_DATASET_ID_COLUMN")
HF_INPUT_DATASET_COLUMN_A = os.getenv("HF_INPUT_DATASET_COLUMN_A")
HF_INPUT_DATASET_COLUMN_B = os.getenv("HF_INPUT_DATASET_COLUMN_B")
HF_INPUT_DATASET_URL_COLUMN = os.getenv("HF_INPUT_DATASET_URL_COLUMN")
HF_OUTPUT_DATASET = os.getenv("HF_OUTPUT_DATASET")
HF_OUTPUT_DATASET_DIR = os.getenv("HF_OUTPUT_DATASET_DIR")
INSTRUCTIONS = """
# Pairwise Model Output Labeling
Please compare the two model outputs shown below and select which one you think is better.
- Choose "A is better" if the output from Model A (left) is superior
- Choose "B is better" if the output from Model B (right) is superior
- Choose "Tie" if you think they are equally good or bad
- Choose "Can't choose" if you cannot make a determination
"""
SAVE_EVERY_N_EXAMPLES = 5
class PairwiseLabeler:
def __init__(self):
self.current_index = defaultdict(int)
self.results = defaultdict(list)
self.df = self.read_hf_dataset()
self.has_url_column = HF_INPUT_DATASET_URL_COLUMN and HF_INPUT_DATASET_URL_COLUMN in self.df.columns
def __len__(self):
return len(self.df)
def read_hf_dataset(self) -> pd.DataFrame:
try:
local_file = hf_hub_download(repo_id=HF_INPUT_DATASET, repo_type="dataset", filename=HF_INPUT_DATASET_PATH)
if local_file.endswith(".json"):
return pd.read_json(local_file)
elif local_file.endswith(".jsonl"):
return pd.read_json(local_file, orient="records",lines=True)
elif local_file.endswith(".csv"):
return pd.read_csv(local_file)
elif local_file.endswith(".parquet"):
return pd.read_parquet(local_file)
else:
raise ValueError(f"Unsupported file type: {local_file}")
except Exception as e:
# Fallback to sample data if loading fails
logging.error(f"Couldn't read HF dataset from {HF_INPUT_DATASET_PATH}. Using sample data instead.")
sample_data = {
HF_INPUT_DATASET_ID_COLUMN: [f"sample_{i}" for i in range(SAVE_EVERY_N_EXAMPLES)],
HF_INPUT_DATASET_COLUMN_A: [f"This is sample generation A {i}" for i in range(SAVE_EVERY_N_EXAMPLES)],
HF_INPUT_DATASET_COLUMN_B: [f"This is sample generation B {i}" for i in range(SAVE_EVERY_N_EXAMPLES)],
}
# Add URL column to sample data if specified
if HF_INPUT_DATASET_URL_COLUMN:
sample_data[HF_INPUT_DATASET_URL_COLUMN] = [f"https://example.com/sample_{i}" for i in range(SAVE_EVERY_N_EXAMPLES)]
return pd.DataFrame(sample_data)
def get_current_pair(self, session_id):
if self.current_index[session_id] >= len(self.df):
if self.has_url_column:
return None, None, None, None
else:
return None, None, None
item = self.df.iloc[self.current_index[session_id]]
item_id = item.get(HF_INPUT_DATASET_ID_COLUMN, f"item_{self.current_index[session_id]}")
left_text = item.get(HF_INPUT_DATASET_COLUMN_A, "")
right_text = item.get(HF_INPUT_DATASET_COLUMN_B, "")
if self.has_url_column:
url = item.get(HF_INPUT_DATASET_URL_COLUMN, "")
return item_id, left_text, right_text, url
else:
return item_id, left_text, right_text
def submit_judgment(self, item_id, left_text, right_text, choice, session_id):
if item_id is None:
if self.has_url_column:
return item_id, left_text, right_text, None, self.current_index[session_id]
else:
return item_id, left_text, right_text, self.current_index[session_id]
# Get the current URL if available
current_url = None
if self.has_url_column:
current_url = self.df.iloc[self.current_index[session_id]].get(HF_INPUT_DATASET_URL_COLUMN, "")
# Record the judgment
result = {
"item_id": item_id,
"judgment": choice,
"timestamp": datetime.datetime.now().isoformat(),
"labeler_id": session_id
}
self.results[session_id].append(result)
# Move to next item
self.current_index[session_id] += 1
# Save results periodically
if len(self.results[session_id]) % SAVE_EVERY_N_EXAMPLES == 0:
self.save_results(session_id)
# Get next pair
if self.has_url_column:
next_id, next_left, next_right, next_url = self.get_current_pair(session_id)
return next_id, next_left, next_right, next_url, self.current_index[session_id]
else:
next_id, next_left, next_right = self.get_current_pair(session_id)
return next_id, next_left, next_right, self.current_index[session_id]
def save_results(self, session_id):
if not self.results[session_id]:
return
try:
# Convert results to dataset format
results_df = pd.DataFrame(self.results[session_id])
results_df.to_json("temp.jsonl", orient="records", lines=True)
# Push to Hugging Face Hub
try:
num_files = len([_ for _ in list_repo_tree(repo_id=HF_OUTPUT_DATASET, repo_type="dataset", path_in_repo=HF_OUTPUT_DATASET_DIR) if session_id in _.path])
except Exception as e:
num_files = 0
# Use session_id in filename to avoid conflicts
filename = f"results_{session_id}_{num_files+1}.jsonl"
upload_file(
repo_id=HF_OUTPUT_DATASET,
repo_type="dataset",
path_in_repo=os.path.join(HF_OUTPUT_DATASET_DIR, filename),
path_or_fileobj="temp.jsonl"
)
os.remove("temp.jsonl")
# Clear saved results
self.results[session_id] = []
logging.info(f"Saved results for session {session_id} to {HF_OUTPUT_DATASET}/{filename}")
except Exception as e:
logging.error(f"Error saving results: {e}")
# Keep results in memory to try saving again later
# Initialize the labeler
labeler = PairwiseLabeler()
# Create a unique session ID
def create_new_session():
return str(uuid.uuid4())[:8]
with gr.Blocks() as app:
# State for the session ID
session_id = gr.State(value=None)
# The actual interface components will be created here
gr.Markdown(INSTRUCTIONS)
# URL display component - only shown if URL column is defined
url_display = None
if labeler.has_url_column:
url_display = gr.HTML(label="Reference URL")
session_id_display = gr.Textbox(label="Session Information", interactive=False)
with gr.Row():
with gr.Column():
left_output = gr.Textbox(
label="Model A Output",
lines=10,
interactive=False
)
with gr.Column():
right_output = gr.Textbox(
label="Model B Output",
lines=10,
interactive=False
)
item_id = gr.Textbox(visible=False)
with gr.Row():
left_btn = gr.Button("⬅️ A is better", variant="primary")
right_btn = gr.Button("➡️ B is better", variant="primary")
tie_btn = gr.Button("🤝 Tie", variant="primary")
cant_choose_btn = gr.Button("🤔 Can't choose")
current_sample_sld = gr.Slider(minimum=0, maximum=len(labeler), step=1,
interactive=False,
label='sample_ind',
info=f"Samples labeled (out of {len(labeler)})",
show_label=False,
container=False,
scale=5)
# Initialize the session and get the first pair
def init_session():
new_session_id = create_new_session()
if labeler.has_url_column:
initial_id, initial_left, initial_right, initial_url = labeler.get_current_pair(new_session_id)
url_html = f'<a href="{initial_url}" target="_blank">{initial_url}</a>' if initial_url else ""
return (
new_session_id, # session_id state
f"Session ID: {new_session_id}", # session_id_display
url_html, # url_display
initial_left, # left_output
initial_right, # right_output
initial_id, # item_id
labeler.current_index[new_session_id] # current_sample_sld
)
else:
initial_id, initial_left, initial_right = labeler.get_current_pair(new_session_id)
return (
new_session_id, # session_id state
f"Session ID: {new_session_id}", # session_id_display
initial_left, # left_output
initial_right, # right_output
initial_id, # item_id
labeler.current_index[new_session_id] # current_sample_sld
)
# Run the initialization when the app loads
if labeler.has_url_column:
app.load(
init_session,
inputs=None,
outputs=[session_id, session_id_display, url_display, left_output, right_output, item_id, current_sample_sld]
)
else:
app.load(
init_session,
inputs=None,
outputs=[session_id, session_id_display, left_output, right_output, item_id, current_sample_sld]
)
def judge_left(session_id, item_id, left_text, right_text):
return judge("A is better", session_id, item_id, left_text, right_text)
def judge_right(session_id, item_id, left_text, right_text):
return judge("B is better", session_id, item_id, left_text, right_text)
def judge_tie(session_id, item_id, left_text, right_text):
return judge("Tie", session_id, item_id, left_text, right_text)
def judge_cant_choose(session_id, item_id, left_text, right_text):
return judge("Can't choose", session_id, item_id, left_text, right_text)
def judge(choice, session_id, item_id, left_text, right_text):
if labeler.has_url_column:
new_id, new_left, new_right, new_url, new_index = labeler.submit_judgment(
item_id, left_text, right_text, choice, session_id
)
url_html = f'<a href="{new_url}" target="_blank">{new_url}</a>' if new_url else ""
return new_id, new_left, new_right, url_html, new_index
else:
new_id, new_left, new_right, new_index = labeler.submit_judgment(
item_id, left_text, right_text, choice, session_id
)
return new_id, new_left, new_right, new_index
if labeler.has_url_column:
left_btn.click(
judge_left,
inputs=[session_id, item_id, left_output, right_output],
outputs=[item_id, left_output, right_output, url_display, current_sample_sld]
)
right_btn.click(
judge_right,
inputs=[session_id, item_id, left_output, right_output],
outputs=[item_id, left_output, right_output, url_display, current_sample_sld]
)
tie_btn.click(
judge_tie,
inputs=[session_id, item_id, left_output, right_output],
outputs=[item_id, left_output, right_output, url_display, current_sample_sld]
)
cant_choose_btn.click(
judge_cant_choose,
inputs=[session_id, item_id, left_output, right_output],
outputs=[item_id, left_output, right_output, url_display, current_sample_sld]
)
else:
left_btn.click(
judge_left,
inputs=[session_id, item_id, left_output, right_output],
outputs=[item_id, left_output, right_output, current_sample_sld]
)
right_btn.click(
judge_right,
inputs=[session_id, item_id, left_output, right_output],
outputs=[item_id, left_output, right_output, current_sample_sld]
)
tie_btn.click(
judge_tie,
inputs=[session_id, item_id, left_output, right_output],
outputs=[item_id, left_output, right_output, current_sample_sld]
)
cant_choose_btn.click(
judge_cant_choose,
inputs=[session_id, item_id, left_output, right_output],
outputs=[item_id, left_output, right_output, current_sample_sld]
)
if __name__ == "__main__":
app.launch() |