Spaces:
Runtime error
Runtime error
File size: 18,178 Bytes
3c3804b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
import json
import os
import cv2
import random
import numpy as np
import gradio as gr
import torch
from zhipuai import ZhipuAI
from pytorch_lightning import seed_everything
from pprint import pprint
from PIL import Image, ImageDraw, ImageFont
from diffusers import (
ControlNetModel,
StableDiffusionControlNetPipeline,
)
from diffusers import (
DDIMScheduler,
PNDMScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
HeunDiscreteScheduler
)
from controlnet_aux import (
PidiNetDetector,
HEDdetector
)
BBOX_MAX_NUM = 8
BBOX_INI_NUM = 0
MAX_LENGTH = 20
device = 'cuda'
pipeline = None
pre_pipeline = None
model_root = os.getenv('REPO_ROOT')
scheduler_root = f'{model_root}/Scheduler'
model_list =[
'JoyType.v1.0', 'RevAnimated-animation-动漫', 'GhostMix-animation-动漫',
'rpg.v5-fantasy_realism-奇幻写实', 'midjourneyPapercut-origami-折纸版画',
'dvarchExterior-architecture-建筑', 'awpainting.v13-portrait-人物肖像'
]
chn_example_dict = {
'漂亮的风景照,很多山峰,清澈的湖水': 'beautiful landscape, many peaks, clear lake',
'画有玫瑰的卡片,明亮的背景': 'a card with roses, bright background',
'一张关于健康教育的卡片,上面有一些文字,有一些食物图标,背景里有一些水果喝饮料的图标,且背景是模糊的': \
'a card for health education, with some writings on it, '
'food icons on the card, some fruits and drinking in the background, blur background '
}
match_dict = {
'JoyType.v1.0': 'JoyType-v1-1M',
'RevAnimated-animation-动漫': 'rev-animated-v1-2-2',
'GhostMix-animation-动漫': 'GhostMix_V2.0',
'rpg.v5-fantasy_realism-奇幻写实': 'rpg_v5',
'midjourneyPapercut-origami-折纸版画': 'midjourneyPapercut_v1',
'dvarchExterior-architecture-建筑': 'dvarchExterior',
'awpainting.v13-portrait-人物肖像': 'awpainting_v13'
}
font_list = [
'CHN-华文行楷',
'CHN-华文新魏',
'CHN-清松手写体',
'CHN-巴蜀墨迹',
'CHN-雷盖体',
'CHN-演示夏行楷',
'CHN-鸿雷板书简体',
'CHN-斑马字类',
'CHN-青柳隶书',
'CHN-辰宇落雁体',
'CHN-宅家麦克笔',
'ENG-Playwrite',
'ENG-Okesip',
'ENG-Shrikhand',
'ENG-Nextstep',
'ENG-Filthyrich',
'ENG-BebasNeue',
'ENG-Gloock',
'ENG-Lemon',
'RUS-Automatons',
'RUS-MKyrill',
'RUS-Alice',
'RUS-Caveat',
'KOR-ChosunGs',
'KOR-Dongle',
'KOR-GodoMaum',
'KOR-UnDotum',
'JPN-GlTsukiji',
'JPN-Aoyagireisyosimo',
'JPN-KouzanMouhitu',
'JPN-Otomanopee'
]
def change_settings(base_model):
if base_model == model_list[0]:
return gr.update(value=20), gr.update(value=7.5), gr.update(value='PNDM')
elif base_model == model_list[1]:
return gr.update(value=30), gr.update(value=8.5), gr.update(value='Euler')
elif base_model == model_list[2]:
return gr.update(value=32), gr.update(value=8.5), gr.update(value='Euler')
elif base_model == model_list[3]:
return gr.update(value=20), gr.update(value=7.5), gr.update(value='DPM')
elif base_model == model_list[4]:
return gr.update(value=25), gr.update(value=6.5), gr.update(value='Euler')
elif base_model == model_list[5]:
return gr.update(value=25), gr.update(value=8.5), gr.update(value='Euler')
elif base_model == model_list[6]:
return gr.update(value=25), gr.update(value=7), gr.update(value='DPM')
else:
pass
def update_box_num(choice):
update_list_1 = [] # checkbox
update_list_2 = [] # font
update_list_3 = [] # text
update_list_4 = [] # bounding box
for i in range(BBOX_MAX_NUM):
if i < choice:
update_list_1.append(gr.update(value=True))
update_list_2.append(gr.update(visible=True))
update_list_3.append(gr.update(visible=True))
update_list_4.extend([gr.update(visible=False) for _ in range(4)])
else:
update_list_1.append(gr.update(value=False))
update_list_2.append(gr.update(visible=False, value='CHN-华文行楷'))
update_list_3.append(gr.update(visible=False, value=''))
update_list_4.extend([
gr.update(visible=False, value=0.4),
gr.update(visible=False, value=0.4),
gr.update(visible=False, value=0.2),
gr.update(visible=False, value=0.2)
])
return *update_list_1, *update_list_2, *update_list_3, *update_list_4
def load_box_list(example_id, choice):
with open(f'templates/{example_id}.json', 'r') as f:
info = json.load(f)
update_list1 = []
update_list2 = []
update_list3 = []
update_list4 = []
for i in range(BBOX_MAX_NUM):
visible = info['visible'][i]
pos = info['pos'][i * 4: (i + 1) * 4]
update_list1.append(gr.update(value=visible))
update_list2.append(gr.update(value=info['font'][i], visible=visible))
update_list3.append(gr.update(value=info['text'][i], visible=visible))
update_list4.extend([
gr.update(value=pos[0]),
gr.update(value=pos[1]),
gr.update(value=pos[2]),
gr.update(value=pos[3])
])
return *update_list1, *update_list2, \
*update_list3, *update_list4, gr.update(value=-1)
def re_edit():
global BBOX_MAX_NUM
update_list = []
for i in range(BBOX_MAX_NUM):
update_list.extend([gr.update(value=0.4), gr.update(value=0.4), gr.update(value=0.2),
gr.update(value=0.2)])
return *update_list, \
gr.Image(
value=create_canvas(),
label='Rect Position', elem_id='MD-bbox-rect-t2i',
show_label=False, visible=True
), \
gr.Slider(value=512), gr.Slider(value=512)
def resize_w(w, img):
return cv2.resize(img, (w, img.shape[0]))
def resize_h(h, img):
return cv2.resize(img, (img.shape[1], h))
def create_canvas(w=512, h=512, c=3, line=5):
image = np.full((h, w, c), 200, dtype=np.uint8)
for i in range(h):
if i % (w // line) == 0:
image[i, :, :] = 150
for j in range(w):
if j % (w // line) == 0:
image[:, j, :] = 150
image[h // 2 - 8:h // 2 + 8, w // 2 - 8:w // 2 + 8, :] = [200, 0, 0]
return image
def canny(img):
low_threshold = 64
high_threshold = 100
img = cv2.Canny(img, low_threshold, high_threshold)
img = img[:, :, None]
img = np.concatenate([img, img, img], axis=2)
return Image.fromarray(img)
def judge_overlap(coord_list1, coord_list2):
judge = coord_list1[0] < coord_list2[2] and coord_list1[2] > coord_list2[0] \
and coord_list1[1] < coord_list2[3] and coord_list1[3] > coord_list2[1]
return judge
def parse_render_list(box_list, shape, box_num):
width = shape[0]
height = shape[1]
polygons = []
font_names = []
texts = []
valid_list = box_list[:box_num]
pos_list = box_list[box_num: 5 * box_num]
font_name_list = box_list[5 * box_num: 6 * box_num]
text_list = box_list[6 * box_num: 7 * box_num]
empty_flag = False
print(font_name_list, text_list)
for i, valid in enumerate(valid_list):
if valid:
pos = pos_list[i * 4: (i + 1) * 4]
top_left_x = int(pos[0] * width)
top_left_y = int(pos[1] * height)
w = int(pos[2] * width)
h = int(pos[3] * height)
font_name = str(font_name_list[i])
text = str(text_list[i])
if text == '':
empty_flag = True
text = 'JoyType'
if w <= 0 or h <= 0:
gr.Warning(f'Area of the box{i + 1} cannot be zero!')
return [], False
polygon = [
top_left_x,
top_left_y,
w, h
]
try:
assert font_name in font_list
font_name = font_name.split('-')[-1]
except Exception as e:
gr.Warning('Please choose a correct font!')
return [], False
polygons.append(polygon)
font_names.append(font_name.split('-')[-1])
texts.append(text)
if empty_flag:
gr.Warning('Null strings will be filled automatically!')
for i in range(len(polygons)):
for j in range(i + 1, len(polygons)):
if judge_overlap(
[polygons[i][0], polygons[i][1], polygons[i][0] + polygons[i][2], polygons[i][1] + polygons[i][3]],
[polygons[j][0], polygons[j][1], polygons[j][0] + polygons[j][2], polygons[j][1] + polygons[j][3]]
):
gr.Warning('Find overlapping boxes!')
return [], False
render_list = []
for i in range(len(polygons)):
text_dict = {}
text_dict['text'] = texts[i]
text_dict['polygon'] = polygons[i]
text_dict['font_name'] = font_names[i]
render_list.append(text_dict)
return render_list, True
def render_all_text(render_list, shape, threshold=512):
width = shape[0]
height = shape[1]
board = Image.new('RGB', (width, height), 'black')
for text_dict in render_list:
text = text_dict['text']
polygon = text_dict['polygon']
font_name = text_dict['font_name']
if len(text) > MAX_LENGTH:
text = text[:MAX_LENGTH]
gr.Warning(f'{text}... exceeds the maximum length {MAX_LENGTH} and has been cropped.')
w, h = polygon[2:]
vert = True if w < h else False
image4ratio = Image.new('RGB', (1024, 1024), 'black')
draw = ImageDraw.Draw(image4ratio)
try:
font = ImageFont.truetype(f'./font/{font_name}.ttf', encoding='utf-8', size=50)
except FileNotFoundError:
font = ImageFont.truetype(f'./font/{font_name}.otf', encoding='utf-8', size=50)
if not vert:
draw.text(xy=(0, 0), text=text, font=font, fill='white')
_, _, _tw, _th = draw.textbbox(xy=(0, 0), text=text, font=font)
_th += 1
else:
_tw, y_c = 0, 0
for c in text:
draw.text(xy=(0, y_c), text=c, font=font, fill='white')
_l, _t, _r, _b = font.getbbox(c)
_tw = max(_tw, _r - _l)
y_c += _b
_th = y_c + 1
ratio = (_th * w) / (_tw * h)
text_img = image4ratio.crop((0, 0, _tw, _th))
x_offset, y_offset = 0, 0
if 0.8 <= ratio <= 1.2:
text_img = text_img.resize((w, h))
elif ratio < 0.75:
resize_h = int(_th * (w / _tw))
text_img = text_img.resize((w, resize_h))
y_offset = (h - resize_h) // 2
else:
resize_w = int(_tw * (h / _th))
text_img = text_img.resize((resize_w, h))
x_offset = (w - resize_w) // 2
board.paste(text_img, (polygon[0] + x_offset, polygon[1] + y_offset))
return board
def load_pipeline(model_name, scheduler_name):
controlnet_path = os.path.join(model_root, f'{match_dict["JoyType.v1.0"]}')
model_path = os.path.join(model_root, model_name)
scheduler_name = scheduler_name.lower()
if scheduler_name == 'pndm':
scheduler = PNDMScheduler.from_pretrained(scheduler_root, subfolder='pndm')
if scheduler_name == 'lms':
scheduler = LMSDiscreteScheduler.from_pretrained(scheduler_root, subfolder='lms')
if scheduler_name == 'euler':
scheduler = EulerDiscreteScheduler.from_pretrained(scheduler_root, subfolder='euler')
if scheduler_name == 'dpm':
scheduler = DPMSolverMultistepScheduler.from_pretrained(scheduler_root, subfolder='dpm')
if scheduler_name == 'ddim':
scheduler = DDIMScheduler.from_pretrained(scheduler_root, subfolder='ddim')
if scheduler_name == 'heun':
scheduler = HeunDiscreteScheduler.from_pretrained(scheduler_root, subfolder='heun')
if scheduler_name == 'euler-ancestral':
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(scheduler_root, subfolder='euler-ancestral')
controlnet = ControlNetModel.from_pretrained(
controlnet_path,
subfolder='controlnet',
torch_dtype=torch.float32
)
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
model_path,
scheduler=scheduler,
controlnet=controlnet,
torch_dtype=torch.float32,
).to(device)
return pipeline
def preprocess_prompt(prompt):
client = ZhipuAI(api_key=os.getenv('ZHIPU_API_KEY'))
response = client.chat.completions.create(
model="glm-4-0520",
messages=[
{
'role': 'system',
'content': '''
Stable Diffusion是一款利用深度学习的文生图模型,支持通过使用提示词来产生新的图像,描述要包含或省略的元素。
我在这里引入Stable Diffusion算法中的Prompt概念,又被称为提示符。这里的Prompt通常可以用来描述图像,
他由普通常见的单词构成,最好是可以在数据集来源站点找到的著名标签(比如Ddanbooru)。
下面我将说明Prompt的生出步骤,这里的Prompt主要用于描述人物。在Prompt的生成中,你需要通过提示词来描述 人物属性,主题,外表,情绪,衣服,姿势,视角,动作,背景。
用英语单词或短语甚至自然语言的标签来描述,并不局限于我给你的单词。然后将你想要的相似的提示词组合在一起,请使用英文半角,做分隔符,每个提示词不要带引号,并将这些按从最重要到最不重要的顺序 排列。
另外请您注意,永远在每个 Prompt的前面加上引号里的内容,
“(((best quality))),(((ultra detailed))),(((masterpiece))),illustration,” 这是高质量的标志。
人物属性中,1girl表示你生成了一个女孩,2girls表示生成了两个女孩,一次。另外再注意,Prompt中不能带有-和_。
可以有空格和自然语言,但不要太多,单词不能重复。只返回Prompt。
'''
},
{
'role': 'user',
'content': prompt
}
],
temperature=0.5,
max_tokens=2048,
top_p=1,
stream=False,
)
if response:
glm = []
glm_return_list = response.choices
for item in glm_return_list:
glm.append(item.message.content)
return {'flag': 1, 'data': glm}
else:
return {'flag': 0, 'data': {}}
def process(
num_samples,
a_prompt,
n_prompt,
conditioning_scale,
cfg_scale,
inference_steps,
seed,
usr_prompt,
rect_img,
base_model,
scheduler_name,
box_num,
*box_list
):
if usr_prompt == '':
gr.Warning('Must input a prompt!')
return None, gr.Markdown('error')
if seed == -1:
seed = random.randint(0, 2147483647)
seed_everything(seed)
# Support Chinese Input
if usr_prompt in chn_example_dict.keys():
usr_prompt = chn_example_dict[usr_prompt]
else:
for ch in usr_prompt:
if '\u4e00' <= ch <= '\u9fff':
data = preprocess_prompt(usr_prompt)
if data['flag'] == 1:
usr_prompt = data['data'][0][1: -1]
else:
gr.Warning('Something went wrong while translating your prompt, please try again.')
return None, gr.Markdown('error')
break
shape = (rect_img.shape[1], rect_img.shape[0])
render_list, flag = parse_render_list(box_list, shape, box_num)
if flag:
render_img = render_all_text(render_list, shape)
else:
return None, gr.Markdown('error')
model_name = match_dict[base_model]
render_img = canny(np.array(render_img))
w, h = render_img.size
global pipeline, pre_pipeline
if pre_pipeline != model_name or pipeline is None:
pre_pipeline = model_name
pipeline = load_pipeline(model_name, scheduler_name)
batch_render_img = [render_img for _ in range(num_samples)]
batch_prompt = [f'{usr_prompt}, {a_prompt}' for _ in range(num_samples)]
batch_n_prompt = [n_prompt for _ in range(num_samples)]
images = pipeline(
batch_prompt,
negative_prompt=batch_n_prompt,
image=batch_render_img,
controlnet_conditioning_scale=float(conditioning_scale),
guidance_scale=float(cfg_scale),
width=w,
height=h,
num_inference_steps=int(inference_steps),
).images
return images, gr.Markdown(f'{seed}, {usr_prompt}, {box_list}')
def draw_example(box_list, color, id):
board = Image.fromarray(create_canvas())
w, h = board.size
draw = ImageDraw.Draw(board, mode='RGBA')
visible = box_list[:BBOX_MAX_NUM]
pos = box_list[BBOX_MAX_NUM: 5 * BBOX_MAX_NUM]
font = box_list[5 * BBOX_MAX_NUM: 6 * BBOX_MAX_NUM]
text = box_list[6 * BBOX_MAX_NUM:]
info = {
'visible': list(visible),
'pos': list(pos),
'font': list(font),
'text': list(text)
}
with open(f'templates/{id}.json', 'w') as f:
json.dump(info, f)
for i in range(BBOX_MAX_NUM):
if visible[i] is True:
polygon = pos[i * 4: (i + 1) * 4]
print(polygon)
left = w * polygon[0]
top = h * polygon[1]
right = left + w * polygon[2]
bottom = top + h * polygon[3]
draw.rectangle([left, top, right, bottom], outline=color[i][0], fill=color[i][1], width=3)
board.save(f'./examples/{id}.png')
if __name__ == '__main__':
pass
|