File size: 18,178 Bytes
3c3804b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import json
import os
import cv2
import random
import numpy as np
import gradio as gr
import torch

from zhipuai import ZhipuAI
from pytorch_lightning import seed_everything
from pprint import pprint
from PIL import Image, ImageDraw, ImageFont
from diffusers import (
    ControlNetModel,
    StableDiffusionControlNetPipeline,
)
from diffusers import (
    DDIMScheduler,
    PNDMScheduler,
    EulerAncestralDiscreteScheduler,
    DPMSolverMultistepScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    HeunDiscreteScheduler
)
from controlnet_aux import (
    PidiNetDetector,
    HEDdetector
)


BBOX_MAX_NUM = 8
BBOX_INI_NUM = 0
MAX_LENGTH = 20
device = 'cuda'
pipeline = None
pre_pipeline = None
model_root = os.getenv('REPO_ROOT')
scheduler_root = f'{model_root}/Scheduler'
model_list =[
    'JoyType.v1.0', 'RevAnimated-animation-动漫', 'GhostMix-animation-动漫',
    'rpg.v5-fantasy_realism-奇幻写实', 'midjourneyPapercut-origami-折纸版画',
    'dvarchExterior-architecture-建筑', 'awpainting.v13-portrait-人物肖像'
]
chn_example_dict = {
    '漂亮的风景照,很多山峰,清澈的湖水': 'beautiful landscape, many peaks, clear lake',
    '画有玫瑰的卡片,明亮的背景': 'a card with roses, bright background',
    '一张关于健康教育的卡片,上面有一些文字,有一些食物图标,背景里有一些水果喝饮料的图标,且背景是模糊的': \
        'a card for health education, with some writings on it, '
        'food icons on the card, some fruits and drinking in the background, blur background '
}
match_dict = {
    'JoyType.v1.0': 'JoyType-v1-1M',
    'RevAnimated-animation-动漫': 'rev-animated-v1-2-2',
    'GhostMix-animation-动漫': 'GhostMix_V2.0',
    'rpg.v5-fantasy_realism-奇幻写实': 'rpg_v5',
    'midjourneyPapercut-origami-折纸版画': 'midjourneyPapercut_v1',
    'dvarchExterior-architecture-建筑': 'dvarchExterior',
    'awpainting.v13-portrait-人物肖像': 'awpainting_v13'
}
font_list = [
    'CHN-华文行楷',
    'CHN-华文新魏',
    'CHN-清松手写体',
    'CHN-巴蜀墨迹',
    'CHN-雷盖体',
    'CHN-演示夏行楷',
    'CHN-鸿雷板书简体',
    'CHN-斑马字类',
    'CHN-青柳隶书',
    'CHN-辰宇落雁体',
    'CHN-宅家麦克笔',
    'ENG-Playwrite',
    'ENG-Okesip',
    'ENG-Shrikhand',
    'ENG-Nextstep',
    'ENG-Filthyrich',
    'ENG-BebasNeue',
    'ENG-Gloock',
    'ENG-Lemon',
    'RUS-Automatons',
    'RUS-MKyrill',
    'RUS-Alice',
    'RUS-Caveat',
    'KOR-ChosunGs',
    'KOR-Dongle',
    'KOR-GodoMaum',
    'KOR-UnDotum',
    'JPN-GlTsukiji',
    'JPN-Aoyagireisyosimo',
    'JPN-KouzanMouhitu',
    'JPN-Otomanopee'
]


def change_settings(base_model):
    if base_model == model_list[0]:
        return gr.update(value=20), gr.update(value=7.5), gr.update(value='PNDM')
    elif base_model == model_list[1]:
        return gr.update(value=30), gr.update(value=8.5), gr.update(value='Euler')
    elif base_model == model_list[2]:
        return gr.update(value=32), gr.update(value=8.5), gr.update(value='Euler')
    elif base_model == model_list[3]:
        return gr.update(value=20), gr.update(value=7.5), gr.update(value='DPM')
    elif base_model == model_list[4]:
        return gr.update(value=25), gr.update(value=6.5), gr.update(value='Euler')
    elif base_model == model_list[5]:
        return gr.update(value=25), gr.update(value=8.5), gr.update(value='Euler')
    elif base_model == model_list[6]:
        return gr.update(value=25), gr.update(value=7), gr.update(value='DPM')
    else:
        pass


def update_box_num(choice):
    update_list_1 = []  # checkbox
    update_list_2 = []  # font
    update_list_3 = []  # text
    update_list_4 = []  # bounding box
    for i in range(BBOX_MAX_NUM):
        if i < choice:
            update_list_1.append(gr.update(value=True))
            update_list_2.append(gr.update(visible=True))
            update_list_3.append(gr.update(visible=True))
            update_list_4.extend([gr.update(visible=False) for _ in range(4)])
        else:
            update_list_1.append(gr.update(value=False))
            update_list_2.append(gr.update(visible=False, value='CHN-华文行楷'))
            update_list_3.append(gr.update(visible=False, value=''))
            update_list_4.extend([
                gr.update(visible=False, value=0.4),
                gr.update(visible=False, value=0.4),
                gr.update(visible=False, value=0.2),
                gr.update(visible=False, value=0.2)
            ])

    return *update_list_1, *update_list_2, *update_list_3, *update_list_4


def load_box_list(example_id, choice):
    with open(f'templates/{example_id}.json', 'r') as f:
        info = json.load(f)
    update_list1 = []
    update_list2 = []
    update_list3 = []
    update_list4 = []

    for i in range(BBOX_MAX_NUM):
        visible = info['visible'][i]
        pos = info['pos'][i * 4: (i + 1) * 4]
        update_list1.append(gr.update(value=visible))
        update_list2.append(gr.update(value=info['font'][i], visible=visible))
        update_list3.append(gr.update(value=info['text'][i], visible=visible))
        update_list4.extend([
            gr.update(value=pos[0]),
            gr.update(value=pos[1]),
            gr.update(value=pos[2]),
            gr.update(value=pos[3])
        ])

    return *update_list1, *update_list2, \
        *update_list3, *update_list4, gr.update(value=-1)

    
def re_edit():
    global BBOX_MAX_NUM
    update_list = []
    for i in range(BBOX_MAX_NUM):
        update_list.extend([gr.update(value=0.4), gr.update(value=0.4), gr.update(value=0.2),
                            gr.update(value=0.2)])
    return *update_list, \
        gr.Image(
            value=create_canvas(),
            label='Rect Position', elem_id='MD-bbox-rect-t2i',
            show_label=False, visible=True
        ), \
        gr.Slider(value=512), gr.Slider(value=512)


def resize_w(w, img):
    return cv2.resize(img, (w, img.shape[0]))


def resize_h(h, img):
    return cv2.resize(img, (img.shape[1], h))


def create_canvas(w=512, h=512, c=3, line=5):
    image = np.full((h, w, c), 200, dtype=np.uint8)
    for i in range(h):
        if i % (w // line) == 0:
            image[i, :, :] = 150
    for j in range(w):
        if j % (w // line) == 0:
            image[:, j, :] = 150
    image[h // 2 - 8:h // 2 + 8, w // 2 - 8:w // 2 + 8, :] = [200, 0, 0]
    return image


def canny(img):
    low_threshold = 64
    high_threshold = 100

    img = cv2.Canny(img, low_threshold, high_threshold)
    img = img[:, :, None]
    img = np.concatenate([img, img, img], axis=2)
    return Image.fromarray(img)


def judge_overlap(coord_list1, coord_list2):
    judge = coord_list1[0] < coord_list2[2] and coord_list1[2] > coord_list2[0] \
            and coord_list1[1] < coord_list2[3] and coord_list1[3] > coord_list2[1]
    return judge


def parse_render_list(box_list, shape, box_num):
    width = shape[0]
    height = shape[1]
    polygons = []
    font_names = []
    texts = []
    valid_list = box_list[:box_num]
    pos_list = box_list[box_num: 5 * box_num]
    font_name_list = box_list[5 * box_num: 6 * box_num]
    text_list = box_list[6 * box_num: 7 * box_num]
    empty_flag = False

    print(font_name_list, text_list)

    for i, valid in enumerate(valid_list):
        if valid:
            pos = pos_list[i * 4: (i + 1) * 4]
            top_left_x = int(pos[0] * width)
            top_left_y = int(pos[1] * height)
            w = int(pos[2] * width)
            h = int(pos[3] * height)
            font_name = str(font_name_list[i])
            text = str(text_list[i])
            if text == '':
                empty_flag = True
                text = 'JoyType'
            if w <= 0 or h <= 0:
                gr.Warning(f'Area of the box{i + 1} cannot be zero!')
                return [], False
            polygon = [
                top_left_x,
                top_left_y,
                w, h
            ]
            try:
                assert font_name in font_list
                font_name = font_name.split('-')[-1]
            except Exception as e:
                gr.Warning('Please choose a correct font!')
                return [], False

            polygons.append(polygon)
            font_names.append(font_name.split('-')[-1])
            texts.append(text)

    if empty_flag:
        gr.Warning('Null strings will be filled automatically!')

    for i in range(len(polygons)):
        for j in range(i + 1, len(polygons)):
            if judge_overlap(
                    [polygons[i][0], polygons[i][1], polygons[i][0] + polygons[i][2], polygons[i][1] + polygons[i][3]],
                    [polygons[j][0], polygons[j][1], polygons[j][0] + polygons[j][2], polygons[j][1] + polygons[j][3]]
            ):
                gr.Warning('Find overlapping boxes!')
                return [], False

    render_list = []
    for i in range(len(polygons)):
        text_dict = {}
        text_dict['text'] = texts[i]
        text_dict['polygon'] = polygons[i]
        text_dict['font_name'] = font_names[i]
        render_list.append(text_dict)

    return render_list, True


def render_all_text(render_list, shape, threshold=512):
    width = shape[0]
    height = shape[1]
    board = Image.new('RGB', (width, height), 'black')

    for text_dict in render_list:
        text = text_dict['text']
        polygon = text_dict['polygon']
        font_name = text_dict['font_name']
        if len(text) > MAX_LENGTH:
            text = text[:MAX_LENGTH]
            gr.Warning(f'{text}... exceeds the maximum length {MAX_LENGTH} and has been cropped.')

        w, h = polygon[2:]
        vert = True if w < h else False
        image4ratio = Image.new('RGB', (1024, 1024), 'black')
        draw = ImageDraw.Draw(image4ratio)

        try:
            font = ImageFont.truetype(f'./font/{font_name}.ttf', encoding='utf-8', size=50)
        except FileNotFoundError:
            font = ImageFont.truetype(f'./font/{font_name}.otf', encoding='utf-8', size=50)

        if not vert:
            draw.text(xy=(0, 0), text=text, font=font, fill='white')
            _, _, _tw, _th = draw.textbbox(xy=(0, 0), text=text, font=font)
            _th += 1
        else:
            _tw, y_c = 0, 0
            for c in text:
                draw.text(xy=(0, y_c), text=c, font=font, fill='white')
                _l, _t, _r, _b = font.getbbox(c)
                _tw = max(_tw, _r - _l)
                y_c += _b
            _th = y_c + 1

        ratio = (_th * w) / (_tw * h)
        text_img = image4ratio.crop((0, 0, _tw, _th))
        x_offset, y_offset = 0, 0
        if 0.8 <= ratio <= 1.2:
            text_img = text_img.resize((w, h))
        elif ratio < 0.75:
            resize_h = int(_th * (w / _tw))
            text_img = text_img.resize((w, resize_h))
            y_offset = (h - resize_h) // 2
        else:
            resize_w = int(_tw * (h / _th))
            text_img = text_img.resize((resize_w, h))
            x_offset = (w - resize_w) // 2

        board.paste(text_img, (polygon[0] + x_offset, polygon[1] + y_offset))

    return board


def load_pipeline(model_name, scheduler_name):
    controlnet_path = os.path.join(model_root, f'{match_dict["JoyType.v1.0"]}')
    model_path = os.path.join(model_root, model_name)
    scheduler_name = scheduler_name.lower()

    if scheduler_name == 'pndm':
        scheduler = PNDMScheduler.from_pretrained(scheduler_root, subfolder='pndm')
    if scheduler_name == 'lms':
        scheduler = LMSDiscreteScheduler.from_pretrained(scheduler_root, subfolder='lms')
    if scheduler_name == 'euler':
        scheduler = EulerDiscreteScheduler.from_pretrained(scheduler_root, subfolder='euler')
    if scheduler_name == 'dpm':
        scheduler = DPMSolverMultistepScheduler.from_pretrained(scheduler_root, subfolder='dpm')
    if scheduler_name == 'ddim':
        scheduler = DDIMScheduler.from_pretrained(scheduler_root, subfolder='ddim')
    if scheduler_name == 'heun':
        scheduler = HeunDiscreteScheduler.from_pretrained(scheduler_root, subfolder='heun')
    if scheduler_name == 'euler-ancestral':
        scheduler = EulerAncestralDiscreteScheduler.from_pretrained(scheduler_root, subfolder='euler-ancestral')

    controlnet = ControlNetModel.from_pretrained(
        controlnet_path,
        subfolder='controlnet',
        torch_dtype=torch.float32
    )
    pipeline = StableDiffusionControlNetPipeline.from_pretrained(
        model_path,
        scheduler=scheduler,
        controlnet=controlnet,
        torch_dtype=torch.float32,
    ).to(device)

    return pipeline


def preprocess_prompt(prompt):
    client = ZhipuAI(api_key=os.getenv('ZHIPU_API_KEY'))
    response = client.chat.completions.create(
        model="glm-4-0520",
        messages=[
            {
                'role': 'system',
                'content': '''
                   Stable Diffusion是一款利用深度学习的文生图模型,支持通过使用提示词来产生新的图像,描述要包含或省略的元素。
                   我在这里引入Stable Diffusion算法中的Prompt概念,又被称为提示符。这里的Prompt通常可以用来描述图像,
                   他由普通常见的单词构成,最好是可以在数据集来源站点找到的著名标签(比如Ddanbooru)。
                   下面我将说明Prompt的生出步骤,这里的Prompt主要用于描述人物。在Prompt的生成中,你需要通过提示词来描述 人物属性,主题,外表,情绪,衣服,姿势,视角,动作,背景。
                   用英语单词或短语甚至自然语言的标签来描述,并不局限于我给你的单词。然后将你想要的相似的提示词组合在一起,请使用英文半角,做分隔符,每个提示词不要带引号,并将这些按从最重要到最不重要的顺序 排列。
                   另外请您注意,永远在每个 Prompt的前面加上引号里的内容, 
                   “(((best quality))),(((ultra detailed))),(((masterpiece))),illustration,” 这是高质量的标志。
                   人物属性中,1girl表示你生成了一个女孩,2girls表示生成了两个女孩,一次。另外再注意,Prompt中不能带有-和_。
                   可以有空格和自然语言,但不要太多,单词不能重复。只返回Prompt。
                   '''
            },
            {
                'role': 'user', 
                'content': prompt
            }
        ],
        temperature=0.5,
        max_tokens=2048,
        top_p=1,
        stream=False,
    )

    if response:
        glm = []
        glm_return_list = response.choices
        for item in glm_return_list:
            glm.append(item.message.content)

        return {'flag': 1, 'data': glm}
    else:
        return {'flag': 0, 'data': {}}


def process(
        num_samples,
        a_prompt,
        n_prompt,
        conditioning_scale,
        cfg_scale,
        inference_steps,
        seed,
        usr_prompt,
        rect_img,
        base_model,
        scheduler_name,
        box_num,
        *box_list
):
    if usr_prompt == '':
        gr.Warning('Must input a prompt!')
        return None, gr.Markdown('error')

    if seed == -1:
        seed = random.randint(0, 2147483647)
    seed_everything(seed)
    
    # Support Chinese Input
    if usr_prompt in chn_example_dict.keys():
        usr_prompt = chn_example_dict[usr_prompt]
    else:
        for ch in usr_prompt:
            if '\u4e00' <= ch <= '\u9fff':
                data = preprocess_prompt(usr_prompt)
                if data['flag'] == 1:
                    usr_prompt = data['data'][0][1: -1]
                else:
                    gr.Warning('Something went wrong while translating your prompt, please try again.')
                    return None, gr.Markdown('error')
                break

    shape = (rect_img.shape[1], rect_img.shape[0])
    render_list, flag = parse_render_list(box_list, shape, box_num)
    if flag:
        render_img = render_all_text(render_list, shape)
    else:
        return None, gr.Markdown('error')

    model_name = match_dict[base_model]
    render_img = canny(np.array(render_img))
    
    w, h = render_img.size
    global pipeline, pre_pipeline
    
    if pre_pipeline != model_name or pipeline is None:
        pre_pipeline = model_name
        pipeline = load_pipeline(model_name, scheduler_name)
    
    batch_render_img = [render_img for _ in range(num_samples)]
    batch_prompt = [f'{usr_prompt}, {a_prompt}' for _ in range(num_samples)]
    batch_n_prompt = [n_prompt for _ in range(num_samples)]
    
    images = pipeline(
        batch_prompt,
        negative_prompt=batch_n_prompt,
        image=batch_render_img,
        controlnet_conditioning_scale=float(conditioning_scale),
        guidance_scale=float(cfg_scale),
        width=w,
        height=h,
        num_inference_steps=int(inference_steps),
    ).images
    
    return images, gr.Markdown(f'{seed},  {usr_prompt},  {box_list}')


def draw_example(box_list, color, id):
    board = Image.fromarray(create_canvas())

    w, h = board.size

    draw = ImageDraw.Draw(board, mode='RGBA')
    visible = box_list[:BBOX_MAX_NUM]
    pos = box_list[BBOX_MAX_NUM: 5 * BBOX_MAX_NUM]
    font = box_list[5 * BBOX_MAX_NUM: 6 * BBOX_MAX_NUM]
    text = box_list[6 * BBOX_MAX_NUM:]

    info = {
        'visible': list(visible),
        'pos': list(pos),
        'font': list(font),
        'text': list(text)
    }

    with open(f'templates/{id}.json', 'w') as f:
        json.dump(info, f)

    for i in range(BBOX_MAX_NUM):
        if visible[i] is True:
            polygon = pos[i * 4: (i + 1) * 4]
            print(polygon)
            left = w * polygon[0]
            top = h * polygon[1]
            right = left + w * polygon[2]
            bottom = top + h * polygon[3]
            draw.rectangle([left, top, right, bottom], outline=color[i][0], fill=color[i][1], width=3)

    board.save(f'./examples/{id}.png')


if __name__ == '__main__':
    pass