import fastai from fastai.vision.all import * import gradio as gr learn = load_learner('model.pkl') categories = ('air chair','hollowback','airflare','airbaby','headspin') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float,probs))) image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = ['air_chair.jpg','hollowback.jpeg','airbaby.jpeg','airflare.jpeg','headspin.jpeg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)