Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -45,15 +45,16 @@ messages = [
|
|
45 |
qa_prompt = ChatPromptTemplate.from_messages( messages )
|
46 |
|
47 |
@traceable
|
48 |
-
pdf_qa
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
#Constraints: Debes responder solamente con la informacion disponible y saludar solo una vez. En caso no tengas una respuesta o no est茅s seguro, no inventes respuesta.
|
57 |
|
58 |
import gradio as gr
|
59 |
# Define chat interface
|
@@ -76,7 +77,7 @@ with gr.Blocks() as demo:
|
|
76 |
chat_history_tuples.append((message[0], message[1]))
|
77 |
|
78 |
# Get result from QA chain
|
79 |
-
result = pdf_qa(
|
80 |
|
81 |
# Append user message and response to chat history
|
82 |
chat_history.append((query, result["answer"]))
|
|
|
45 |
qa_prompt = ChatPromptTemplate.from_messages( messages )
|
46 |
|
47 |
@traceable
|
48 |
+
def pdf_qa(query):
|
49 |
+
|
50 |
+
function = ConversationalRetrievalChain.from_llm(
|
51 |
+
llm = llm,
|
52 |
+
retriever=vectordb.as_retriever(search_kwargs={'k':16})
|
53 |
+
, combine_docs_chain_kwargs={'prompt': qa_prompt},
|
54 |
+
memory = memory#,max_tokens_limit=4000
|
55 |
+
)
|
56 |
|
57 |
+
return function({"question": query})
|
|
|
58 |
|
59 |
import gradio as gr
|
60 |
# Define chat interface
|
|
|
77 |
chat_history_tuples.append((message[0], message[1]))
|
78 |
|
79 |
# Get result from QA chain
|
80 |
+
result = pdf_qa(query))
|
81 |
|
82 |
# Append user message and response to chat history
|
83 |
chat_history.append((query, result["answer"]))
|