from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory, ConversationSummaryMemory from langchain.chat_models import ChatOpenAI from langsmith import traceable from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma import os import sys from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) from langchain.prompts import ChatPromptTemplate from langchain.prompts.chat import SystemMessagePromptTemplate, HumanMessagePromptTemplate #embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') embeddings = OpenAIEmbeddings() #vectordb=Chroma.from_documents(document_chunks,embedding=embeddings, persist_directory='./ai_vocacional_v2') vectordb = Chroma(persist_directory="./ai_vocacional_v2", embedding_function=embeddings) llm=ChatOpenAI(temperature=0, model_name='gpt-4o-mini') memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) general_system_template = r""" Eres el Orientador de carreras. Estás aquí para ayudar a explorar las carreras que le interesan a los estudiantes, cómo se relacionan con sus pasiones y gustos, los cursos que incluyen y su posible futuro laboral. Toma los siguientes documentos de contexto {context} y responde únicamente basado en este contexto. """ general_user_template = "Pregunta:```{question}```" messages = [ SystemMessagePromptTemplate.from_template(general_system_template), HumanMessagePromptTemplate.from_template(general_user_template) ] qa_prompt = ChatPromptTemplate.from_messages( messages ) @traceable def pdf_qa(query): function = ConversationalRetrievalChain.from_llm( llm = llm, retriever=vectordb.as_retriever(search_kwargs={'k':16}) , combine_docs_chain_kwargs={'prompt': qa_prompt}, memory = memory#,max_tokens_limit=4000 ) return function({"question": query}) import gradio as gr # Define chat interface with gr.Blocks() as demo: chatbot = gr.Chatbot(value=[[None,''' ¡Hola! Soy tu Orientador de carreras. Estoy aquí para ayudarte a explorar las carreras que te interesan, cómo se relacionan con tus pasiones y gustos, los cursos que incluyen y tu posible futuro laboral. ''' ]]) msg = gr.Textbox() clear = gr.Button("Clear") chat_history = [] def user(query, chat_history): print("User query:", query) print("Chat history:", chat_history) # Convert chat history to list of tuples chat_history_tuples = [] for message in chat_history: chat_history_tuples.append((message[0], message[1])) # Get result from QA chain result = pdf_qa(query)) # Append user message and response to chat history chat_history.append((query, result["answer"])) print("Updated chat history:", chat_history) return gr.update(value=""), chat_history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False) clear.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": demo.launch()