catdog / app.py
jealk's picture
implemented dog cat classifier
953d602
raw
history blame
969 Bytes
# AUTOGENERATED! DO NOT EDIT! File to edit: dog_cat_predicter.ipynb.
# %% auto 0
__all__ = ['learn', 'labels', 'image', 'label', 'examples', 'interface', 'is_cat', 'predict_image']
# %% dog_cat_predicter.ipynb 1
from fastai.vision.all import *
import gradio as gr
# %% dog_cat_predicter.ipynb 3
def is_cat(x): return x[0].isupper()
learn = load_learner('models/dog_cat_model.pkl')
# %% dog_cat_predicter.ipynb 5
labels = ['Dog', 'Cat']
def predict_image(img):
#Function to predict input image and return a dictionary with each label and probability (as a float)
pred,pred_idx,probs = learn.predict(img)
return dict(zip(labels, map(float, probs)))
# %% dog_cat_predicter.ipynb 7
#Define the Gradio Interface
image = gr.inputs.Image(shape=(224, 224))
label = gr.outputs.Label()
examples = ['dog.jpg', 'cat.jpg', 'hamster.jpg']
interface = gr.Interface(fn=predict_image, inputs=image, outputs=label, examples=examples)
interface.launch(inline=False)