File size: 3,448 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
d92c7ab
5df72d6
9b5b26a
4a53bad
9b5b26a
86c00c7
9b5b26a
86c00c7
9b5b26a
86c00c7
 
 
 
88edac1
86c00c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d92c7ab
 
 
 
 
 
 
 
4a53bad
86c00c7
 
cadbafb
86c00c7
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
24c617c
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
4ab6fd4
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI


# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_job_tool(arg1: str)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that fetches jobs offers located in France from linkedin website
    Args:
        arg1: A string representing a job position that the user looking for (e.g,'data scientis','marketing', 'pilote')
    """

    url = "https://fresh-linkedin-profile-data.p.rapidapi.com/search-jobs"

    payload = {
	"keywords": arg1,
	"geo_code": 105015875,
	"date_posted": "Any time",
	"experience_levels": [],
	"title_ids": [],
	"onsite_remotes": [],
	"functions": [],
	"industries": [],
	"job_types": [],
	"sort_by": "Most relevant",
	"easy_apply": "false",
	"under_10_applicants": "false",
	"start": 0
    }

    try:
        headers = {
	"x-rapidapi-key": "7aecb4cbd6msha8da9af808d2e76p13d68fjsn9c8adf856ba2",
	"x-rapidapi-host": "fresh-linkedin-profile-data.p.rapidapi.com",
	"Content-Type": "application/json"
        }

        response = requests.post(url, json=payload, headers=headers)
        jobs = response.json().get("data", [])[:5]

        return "\n\n".join(
            f"{job.get('job_title', 'No title')} at {job.get('company', 'Unknown company')}\n"
            f"Location: {job.get('location', 'Unknown location')}\n"
            f"Link: {job.get('job_url', 'No URL')}"
            for job in jobs
        )
        return result
        
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"
        

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud',#model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer,my_job_tool], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()