Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
ControlNetModel, | |
EulerDiscreteScheduler, | |
HeunDiscreteScheduler, | |
LCMScheduler, | |
StableDiffusionXLControlNetPipeline, | |
StableDiffusionXLImg2ImgPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D | |
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
load_image, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from ..pipeline_params import ( | |
IMAGE_TO_IMAGE_IMAGE_PARAMS, | |
TEXT_TO_IMAGE_BATCH_PARAMS, | |
TEXT_TO_IMAGE_IMAGE_PARAMS, | |
TEXT_TO_IMAGE_PARAMS, | |
) | |
from ..test_pipelines_common import ( | |
IPAdapterTesterMixin, | |
PipelineKarrasSchedulerTesterMixin, | |
PipelineLatentTesterMixin, | |
PipelineTesterMixin, | |
SDXLOptionalComponentsTesterMixin, | |
) | |
enable_full_determinism() | |
class StableDiffusionXLControlNetPipelineFastTests( | |
IPAdapterTesterMixin, | |
PipelineLatentTesterMixin, | |
PipelineKarrasSchedulerTesterMixin, | |
PipelineTesterMixin, | |
SDXLOptionalComponentsTesterMixin, | |
unittest.TestCase, | |
): | |
pipeline_class = StableDiffusionXLControlNetPipeline | |
params = TEXT_TO_IMAGE_PARAMS | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
cross_attention_dim=64, | |
time_cond_proj_dim=time_cond_proj_dim, | |
) | |
torch.manual_seed(0) | |
controlnet = ControlNetModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
in_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
conditioning_embedding_out_channels=(16, 32), | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
cross_attention_dim=64, | |
) | |
torch.manual_seed(0) | |
scheduler = EulerDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
steps_offset=1, | |
beta_schedule="scaled_linear", | |
timestep_spacing="leading", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
# SD2-specific config below | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"controlnet": controlnet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer_2": tokenizer_2, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
controlnet_embedder_scale_factor = 2 | |
image = randn_tensor( | |
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
generator=generator, | |
device=torch.device(device), | |
) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "np", | |
"image": image, | |
} | |
return inputs | |
def test_attention_slicing_forward_pass(self): | |
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
def test_ip_adapter_single(self, from_ssd1b=False, expected_pipe_slice=None): | |
if not from_ssd1b: | |
expected_pipe_slice = None | |
if torch_device == "cpu": | |
expected_pipe_slice = np.array( | |
[0.7331, 0.5907, 0.5667, 0.6029, 0.5679, 0.5968, 0.4033, 0.4761, 0.5090] | |
) | |
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) | |
def test_xformers_attention_forwardGenerator_pass(self): | |
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
def test_save_load_optional_components(self): | |
self._test_save_load_optional_components() | |
def test_stable_diffusion_xl_offloads(self): | |
pipes = [] | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components).to(torch_device) | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe.enable_model_cpu_offload() | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe.enable_sequential_cpu_offload() | |
pipes.append(sd_pipe) | |
image_slices = [] | |
for pipe in pipes: | |
pipe.unet.set_default_attn_processor() | |
inputs = self.get_dummy_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
def test_stable_diffusion_xl_multi_prompts(self): | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components).to(torch_device) | |
# forward with single prompt | |
inputs = self.get_dummy_inputs(torch_device) | |
output = sd_pipe(**inputs) | |
image_slice_1 = output.images[0, -3:, -3:, -1] | |
# forward with same prompt duplicated | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["prompt_2"] = inputs["prompt"] | |
output = sd_pipe(**inputs) | |
image_slice_2 = output.images[0, -3:, -3:, -1] | |
# ensure the results are equal | |
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
# forward with different prompt | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["prompt_2"] = "different prompt" | |
output = sd_pipe(**inputs) | |
image_slice_3 = output.images[0, -3:, -3:, -1] | |
# ensure the results are not equal | |
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 | |
# manually set a negative_prompt | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["negative_prompt"] = "negative prompt" | |
output = sd_pipe(**inputs) | |
image_slice_1 = output.images[0, -3:, -3:, -1] | |
# forward with same negative_prompt duplicated | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["negative_prompt"] = "negative prompt" | |
inputs["negative_prompt_2"] = inputs["negative_prompt"] | |
output = sd_pipe(**inputs) | |
image_slice_2 = output.images[0, -3:, -3:, -1] | |
# ensure the results are equal | |
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
# forward with different negative_prompt | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["negative_prompt"] = "negative prompt" | |
inputs["negative_prompt_2"] = "different negative prompt" | |
output = sd_pipe(**inputs) | |
image_slice_3 = output.images[0, -3:, -3:, -1] | |
# ensure the results are not equal | |
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 | |
# Copied from test_stable_diffusion_xl.py | |
def test_stable_diffusion_xl_prompt_embeds(self): | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
# forward without prompt embeds | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["prompt"] = 2 * [inputs["prompt"]] | |
inputs["num_images_per_prompt"] = 2 | |
output = sd_pipe(**inputs) | |
image_slice_1 = output.images[0, -3:, -3:, -1] | |
# forward with prompt embeds | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = 2 * [inputs.pop("prompt")] | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = sd_pipe.encode_prompt(prompt) | |
output = sd_pipe( | |
**inputs, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
) | |
image_slice_2 = output.images[0, -3:, -3:, -1] | |
# make sure that it's equal | |
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
def test_controlnet_sdxl_guess(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["guess_mode"] = True | |
output = sd_pipe(**inputs) | |
image_slice = output.images[0, -3:, -3:, -1] | |
expected_slice = np.array( | |
[0.7330834, 0.590667, 0.5667336, 0.6029023, 0.5679491, 0.5968194, 0.4032986, 0.47612396, 0.5089609] | |
) | |
# make sure that it's equal | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4 | |
def test_controlnet_sdxl_lcm(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(time_cond_proj_dim=256) | |
sd_pipe = StableDiffusionXLControlNetPipeline(**components) | |
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = sd_pipe(**inputs) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.7799, 0.614, 0.6162, 0.7082, 0.6662, 0.5833, 0.4148, 0.5182, 0.4866]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
# Copied from test_stable_diffusion_xl.py:test_stable_diffusion_two_xl_mixture_of_denoiser_fast | |
# with `StableDiffusionXLControlNetPipeline` instead of `StableDiffusionXLPipeline` | |
def test_controlnet_sdxl_two_mixture_of_denoiser_fast(self): | |
components = self.get_dummy_components() | |
pipe_1 = StableDiffusionXLControlNetPipeline(**components).to(torch_device) | |
pipe_1.unet.set_default_attn_processor() | |
components_without_controlnet = {k: v for k, v in components.items() if k != "controlnet"} | |
pipe_2 = StableDiffusionXLImg2ImgPipeline(**components_without_controlnet).to(torch_device) | |
pipe_2.unet.set_default_attn_processor() | |
def assert_run_mixture( | |
num_steps, | |
split, | |
scheduler_cls_orig, | |
expected_tss, | |
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps, | |
): | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = num_steps | |
class scheduler_cls(scheduler_cls_orig): | |
pass | |
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) | |
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) | |
# Let's retrieve the number of timesteps we want to use | |
pipe_1.scheduler.set_timesteps(num_steps) | |
expected_steps = pipe_1.scheduler.timesteps.tolist() | |
if pipe_1.scheduler.order == 2: | |
expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) | |
expected_steps_2 = expected_steps_1[-1:] + list(filter(lambda ts: ts < split, expected_tss)) | |
expected_steps = expected_steps_1 + expected_steps_2 | |
else: | |
expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) | |
expected_steps_2 = list(filter(lambda ts: ts < split, expected_tss)) | |
# now we monkey patch step `done_steps` | |
# list into the step function for testing | |
done_steps = [] | |
old_step = copy.copy(scheduler_cls.step) | |
def new_step(self, *args, **kwargs): | |
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t` | |
return old_step(self, *args, **kwargs) | |
scheduler_cls.step = new_step | |
inputs_1 = { | |
**inputs, | |
**{ | |
"denoising_end": 1.0 - (split / num_train_timesteps), | |
"output_type": "latent", | |
}, | |
} | |
latents = pipe_1(**inputs_1).images[0] | |
assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" | |
inputs_2 = { | |
**inputs, | |
**{ | |
"denoising_start": 1.0 - (split / num_train_timesteps), | |
"image": latents, | |
}, | |
} | |
pipe_2(**inputs_2).images[0] | |
assert expected_steps_2 == done_steps[len(expected_steps_1) :] | |
assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" | |
steps = 10 | |
for split in [300, 700]: | |
for scheduler_cls_timesteps in [ | |
(EulerDiscreteScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]), | |
( | |
HeunDiscreteScheduler, | |
[ | |
901.0, | |
801.0, | |
801.0, | |
701.0, | |
701.0, | |
601.0, | |
601.0, | |
501.0, | |
501.0, | |
401.0, | |
401.0, | |
301.0, | |
301.0, | |
201.0, | |
201.0, | |
101.0, | |
101.0, | |
1.0, | |
1.0, | |
], | |
), | |
]: | |
assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1]) | |
class StableDiffusionXLMultiControlNetPipelineFastTests( | |
PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase | |
): | |
pipeline_class = StableDiffusionXLControlNetPipeline | |
params = TEXT_TO_IMAGE_PARAMS | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
cross_attention_dim=64, | |
) | |
torch.manual_seed(0) | |
def init_weights(m): | |
if isinstance(m, torch.nn.Conv2d): | |
torch.nn.init.normal_(m.weight) | |
m.bias.data.fill_(1.0) | |
controlnet1 = ControlNetModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
in_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
conditioning_embedding_out_channels=(16, 32), | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
cross_attention_dim=64, | |
) | |
controlnet1.controlnet_down_blocks.apply(init_weights) | |
torch.manual_seed(0) | |
controlnet2 = ControlNetModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
in_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
conditioning_embedding_out_channels=(16, 32), | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
cross_attention_dim=64, | |
) | |
controlnet2.controlnet_down_blocks.apply(init_weights) | |
torch.manual_seed(0) | |
scheduler = EulerDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
steps_offset=1, | |
beta_schedule="scaled_linear", | |
timestep_spacing="leading", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
# SD2-specific config below | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
controlnet = MultiControlNetModel([controlnet1, controlnet2]) | |
components = { | |
"unet": unet, | |
"controlnet": controlnet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer_2": tokenizer_2, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
controlnet_embedder_scale_factor = 2 | |
images = [ | |
randn_tensor( | |
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
generator=generator, | |
device=torch.device(device), | |
), | |
randn_tensor( | |
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
generator=generator, | |
device=torch.device(device), | |
), | |
] | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "np", | |
"image": images, | |
} | |
return inputs | |
def test_control_guidance_switch(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
scale = 10.0 | |
steps = 4 | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = steps | |
inputs["controlnet_conditioning_scale"] = scale | |
output_1 = pipe(**inputs)[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = steps | |
inputs["controlnet_conditioning_scale"] = scale | |
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = steps | |
inputs["controlnet_conditioning_scale"] = scale | |
output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = steps | |
inputs["controlnet_conditioning_scale"] = scale | |
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] | |
# make sure that all outputs are different | |
assert np.sum(np.abs(output_1 - output_2)) > 1e-3 | |
assert np.sum(np.abs(output_1 - output_3)) > 1e-3 | |
assert np.sum(np.abs(output_1 - output_4)) > 1e-3 | |
def test_attention_slicing_forward_pass(self): | |
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
def test_xformers_attention_forwardGenerator_pass(self): | |
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
def test_save_load_optional_components(self): | |
return self._test_save_load_optional_components() | |
class StableDiffusionXLMultiControlNetOneModelPipelineFastTests( | |
PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase | |
): | |
pipeline_class = StableDiffusionXLControlNetPipeline | |
params = TEXT_TO_IMAGE_PARAMS | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
cross_attention_dim=64, | |
) | |
torch.manual_seed(0) | |
def init_weights(m): | |
if isinstance(m, torch.nn.Conv2d): | |
torch.nn.init.normal_(m.weight) | |
m.bias.data.fill_(1.0) | |
controlnet = ControlNetModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
in_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
conditioning_embedding_out_channels=(16, 32), | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
cross_attention_dim=64, | |
) | |
controlnet.controlnet_down_blocks.apply(init_weights) | |
torch.manual_seed(0) | |
scheduler = EulerDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
steps_offset=1, | |
beta_schedule="scaled_linear", | |
timestep_spacing="leading", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
# SD2-specific config below | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
controlnet = MultiControlNetModel([controlnet]) | |
components = { | |
"unet": unet, | |
"controlnet": controlnet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer_2": tokenizer_2, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
controlnet_embedder_scale_factor = 2 | |
images = [ | |
randn_tensor( | |
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
generator=generator, | |
device=torch.device(device), | |
), | |
] | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "np", | |
"image": images, | |
} | |
return inputs | |
def test_control_guidance_switch(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
scale = 10.0 | |
steps = 4 | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = steps | |
inputs["controlnet_conditioning_scale"] = scale | |
output_1 = pipe(**inputs)[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = steps | |
inputs["controlnet_conditioning_scale"] = scale | |
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = steps | |
inputs["controlnet_conditioning_scale"] = scale | |
output_3 = pipe( | |
**inputs, | |
control_guidance_start=[0.1], | |
control_guidance_end=[0.2], | |
)[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = steps | |
inputs["controlnet_conditioning_scale"] = scale | |
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0] | |
# make sure that all outputs are different | |
assert np.sum(np.abs(output_1 - output_2)) > 1e-3 | |
assert np.sum(np.abs(output_1 - output_3)) > 1e-3 | |
assert np.sum(np.abs(output_1 - output_4)) > 1e-3 | |
def test_attention_slicing_forward_pass(self): | |
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
def test_xformers_attention_forwardGenerator_pass(self): | |
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
def test_save_load_optional_components(self): | |
self._test_save_load_optional_components() | |
def test_negative_conditions(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slice_without_neg_cond = image[0, -3:, -3:, -1] | |
image = pipe( | |
**inputs, | |
negative_original_size=(512, 512), | |
negative_crops_coords_top_left=(0, 0), | |
negative_target_size=(1024, 1024), | |
).images | |
image_slice_with_neg_cond = image[0, -3:, -3:, -1] | |
self.assertTrue(np.abs(image_slice_without_neg_cond - image_slice_with_neg_cond).max() > 1e-2) | |
class ControlNetSDXLPipelineSlowTests(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_canny(self): | |
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0") | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet | |
) | |
pipe.enable_sequential_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "bird" | |
image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
) | |
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images | |
assert images[0].shape == (768, 512, 3) | |
original_image = images[0, -3:, -3:, -1].flatten() | |
expected_image = np.array([0.4185, 0.4127, 0.4089, 0.4046, 0.4115, 0.4096, 0.4081, 0.4112, 0.3913]) | |
assert np.allclose(original_image, expected_image, atol=1e-04) | |
def test_depth(self): | |
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0") | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet | |
) | |
pipe.enable_sequential_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "Stormtrooper's lecture" | |
image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png" | |
) | |
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images | |
assert images[0].shape == (512, 512, 3) | |
original_image = images[0, -3:, -3:, -1].flatten() | |
expected_image = np.array([0.4399, 0.5112, 0.5478, 0.4314, 0.472, 0.4823, 0.4647, 0.4957, 0.4853]) | |
assert np.allclose(original_image, expected_image, atol=1e-04) | |
class StableDiffusionSSD1BControlNetPipelineFastTests(StableDiffusionXLControlNetPipelineFastTests): | |
def test_controlnet_sdxl_guess(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["guess_mode"] = True | |
output = sd_pipe(**inputs) | |
image_slice = output.images[0, -3:, -3:, -1] | |
expected_slice = np.array( | |
[0.6831671, 0.5702532, 0.5459845, 0.6299793, 0.58563006, 0.6033695, 0.4493941, 0.46132287, 0.5035841] | |
) | |
# make sure that it's equal | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4 | |
def test_ip_adapter_single(self): | |
expected_pipe_slice = None | |
if torch_device == "cpu": | |
expected_pipe_slice = np.array([0.6832, 0.5703, 0.5460, 0.6300, 0.5856, 0.6034, 0.4494, 0.4613, 0.5036]) | |
return super().test_ip_adapter_single(from_ssd1b=True, expected_pipe_slice=expected_pipe_slice) | |
def test_controlnet_sdxl_lcm(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(time_cond_proj_dim=256) | |
sd_pipe = StableDiffusionXLControlNetPipeline(**components) | |
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = sd_pipe(**inputs) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.6850, 0.5135, 0.5545, 0.7033, 0.6617, 0.5971, 0.4165, 0.5480, 0.5070]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_conditioning_channels(self): | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
mid_block_type="UNetMidBlock2D", | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
cross_attention_dim=64, | |
time_cond_proj_dim=None, | |
) | |
controlnet = ControlNetModel.from_unet(unet, conditioning_channels=4) | |
assert type(controlnet.mid_block) == UNetMidBlock2D | |
assert controlnet.conditioning_channels == 4 | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
mid_block_type="UNetMidBlock2D", | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
cross_attention_dim=64, | |
time_cond_proj_dim=time_cond_proj_dim, | |
) | |
torch.manual_seed(0) | |
controlnet = ControlNetModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
in_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
conditioning_embedding_out_channels=(16, 32), | |
mid_block_type="UNetMidBlock2D", | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
cross_attention_dim=64, | |
) | |
torch.manual_seed(0) | |
scheduler = EulerDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
steps_offset=1, | |
beta_schedule="scaled_linear", | |
timestep_spacing="leading", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
# SD2-specific config below | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"controlnet": controlnet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer_2": tokenizer_2, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |