Spaces:
Running
on
Zero
Running
on
Zero
jedick
commited on
Commit
Β·
84ccc57
1
Parent(s):
1130c52
Display thinking output
Browse files- app.py +34 -15
- mods/tool_calling_llm.py +33 -7
app.py
CHANGED
@@ -6,6 +6,7 @@ from langgraph.checkpoint.memory import MemorySaver
|
|
6 |
from dotenv import load_dotenv
|
7 |
from main import openai_model, model_id
|
8 |
from util import get_sources, get_start_end_months
|
|
|
9 |
import requests
|
10 |
import zipfile
|
11 |
import shutil
|
@@ -16,6 +17,8 @@ import torch
|
|
16 |
import uuid
|
17 |
import ast
|
18 |
import os
|
|
|
|
|
19 |
|
20 |
# Setup environment variables
|
21 |
load_dotenv(dotenv_path=".env", override=True)
|
@@ -71,7 +74,7 @@ def run_workflow(input, history, compute_mode, thread_id, session_hash):
|
|
71 |
graph_instances[compute_mode][session_hash] = graph
|
72 |
print(f"Set {compute_mode} graph for session {session_hash}")
|
73 |
# Notify when model finishes loading
|
74 |
-
gr.Success(f"{compute_mode}", duration=4, title=f"Model loaded")
|
75 |
|
76 |
print(f"Using thread_id: {thread_id}")
|
77 |
|
@@ -94,6 +97,17 @@ def run_workflow(input, history, compute_mode, thread_id, session_hash):
|
|
94 |
if node == "query":
|
95 |
# Get the message (AIMessage class in LangChain)
|
96 |
chunk_messages = chunk["messages"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# Look for tool calls
|
98 |
if chunk_messages.tool_calls:
|
99 |
# Loop over tool calls
|
@@ -114,11 +128,6 @@ def run_workflow(input, history, compute_mode, thread_id, session_hash):
|
|
114 |
metadata={"title": f"π Running tool {tool_call['name']}"},
|
115 |
)
|
116 |
)
|
117 |
-
if chunk_messages.content:
|
118 |
-
# Display response made instead of or in addition to a tool call
|
119 |
-
history.append(
|
120 |
-
gr.ChatMessage(role="assistant", content=chunk_messages.content)
|
121 |
-
)
|
122 |
yield history, [], []
|
123 |
|
124 |
if node == "retrieve_emails":
|
@@ -165,9 +174,18 @@ def run_workflow(input, history, compute_mode, thread_id, session_hash):
|
|
165 |
chunk_messages = chunk["messages"]
|
166 |
# Chat response without citations
|
167 |
if chunk_messages.content:
|
168 |
-
|
169 |
-
|
170 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
# None is used for no change to the retrieved emails textbox
|
172 |
yield history, None, []
|
173 |
|
@@ -267,7 +285,7 @@ with gr.Blocks(
|
|
267 |
render=False,
|
268 |
)
|
269 |
data_error = gr.Textbox(
|
270 |
-
value="
|
271 |
lines=1,
|
272 |
label="Error downloading or extracting data",
|
273 |
visible=False,
|
@@ -343,7 +361,7 @@ with gr.Blocks(
|
|
343 |
## π·π€π¬ R-help-chat
|
344 |
|
345 |
**Chat with the [R-help mailing list archives](https://stat.ethz.ch/pipermail/r-help/).**
|
346 |
-
An LLM turns your question into a search query, including year ranges, and generates an answer from the retrieved emails.
|
347 |
You can ask follow-up questions with the chat history as context.
|
348 |
β‘οΈ To clear the history and start a new chat, press the ποΈ clear button.
|
349 |
**_Answers may be incorrect._**
|
@@ -361,7 +379,8 @@ with gr.Blocks(
|
|
361 |
if compute_mode == "local":
|
362 |
status_text = f"""
|
363 |
π Now in **local** mode, using ZeroGPU hardware<br>
|
364 |
-
β Response time is about
|
|
|
365 |
β¨ [nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) and [{model_id.split("/")[-1]}](https://huggingface.co/{model_id})<br>
|
366 |
π See the project's [GitHub repository](https://github.com/jedick/R-help-chat)
|
367 |
"""
|
@@ -379,8 +398,8 @@ with gr.Blocks(
|
|
379 |
end = None
|
380 |
info_text = f"""
|
381 |
**Database:** {len(sources)} emails from {start} to {end}.
|
382 |
-
**Features:** RAG, today's date, hybrid search (dense+sparse),
|
383 |
-
multiple retrievals per turn (remote
|
384 |
**Tech:** LangChain + Hugging Face + Gradio; ChromaDB and BM25S-based retrievers.<br>
|
385 |
"""
|
386 |
return info_text
|
@@ -410,7 +429,7 @@ with gr.Blocks(
|
|
410 |
example_questions = [
|
411 |
# "What is today's date?",
|
412 |
"Summarize emails from the last two months",
|
413 |
-
"
|
414 |
"When was has.HLC mentioned?",
|
415 |
"Who reported installation problems in 2023-2024?",
|
416 |
]
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
from main import openai_model, model_id
|
8 |
from util import get_sources, get_start_end_months
|
9 |
+
from mods.tool_calling_llm import extract_think
|
10 |
import requests
|
11 |
import zipfile
|
12 |
import shutil
|
|
|
17 |
import uuid
|
18 |
import ast
|
19 |
import os
|
20 |
+
import re
|
21 |
+
|
22 |
|
23 |
# Setup environment variables
|
24 |
load_dotenv(dotenv_path=".env", override=True)
|
|
|
74 |
graph_instances[compute_mode][session_hash] = graph
|
75 |
print(f"Set {compute_mode} graph for session {session_hash}")
|
76 |
# Notify when model finishes loading
|
77 |
+
gr.Success(f"{compute_mode}", duration=4, title=f"Model loaded!")
|
78 |
|
79 |
print(f"Using thread_id: {thread_id}")
|
80 |
|
|
|
97 |
if node == "query":
|
98 |
# Get the message (AIMessage class in LangChain)
|
99 |
chunk_messages = chunk["messages"]
|
100 |
+
# Display non-tool-call content
|
101 |
+
if chunk_messages.content:
|
102 |
+
content = chunk_messages.content
|
103 |
+
metadata = None
|
104 |
+
# Show thinking content in "metadata" message
|
105 |
+
if content.startswith("<think>"):
|
106 |
+
content, _ = extract_think(content)
|
107 |
+
metadata = {"title": f"π§ Thinking about query"}
|
108 |
+
history.append(
|
109 |
+
gr.ChatMessage(role="assistant", content=content, metadata=metadata)
|
110 |
+
)
|
111 |
# Look for tool calls
|
112 |
if chunk_messages.tool_calls:
|
113 |
# Loop over tool calls
|
|
|
128 |
metadata={"title": f"π Running tool {tool_call['name']}"},
|
129 |
)
|
130 |
)
|
|
|
|
|
|
|
|
|
|
|
131 |
yield history, [], []
|
132 |
|
133 |
if node == "retrieve_emails":
|
|
|
174 |
chunk_messages = chunk["messages"]
|
175 |
# Chat response without citations
|
176 |
if chunk_messages.content:
|
177 |
+
content = chunk_messages.content
|
178 |
+
# Show thinking content in "metadata" message
|
179 |
+
think_text, content = extract_think(content)
|
180 |
+
if think_text:
|
181 |
+
history.append(
|
182 |
+
gr.ChatMessage(
|
183 |
+
role="assistant",
|
184 |
+
content=think_text,
|
185 |
+
metadata={"title": f"π§ Thinking about answer"},
|
186 |
+
)
|
187 |
+
)
|
188 |
+
history.append(gr.ChatMessage(role="assistant", content=content))
|
189 |
# None is used for no change to the retrieved emails textbox
|
190 |
yield history, None, []
|
191 |
|
|
|
285 |
render=False,
|
286 |
)
|
287 |
data_error = gr.Textbox(
|
288 |
+
value="Email database is missing. Try reloading the page, then contact the maintainer if the problem persists.",
|
289 |
lines=1,
|
290 |
label="Error downloading or extracting data",
|
291 |
visible=False,
|
|
|
361 |
## π·π€π¬ R-help-chat
|
362 |
|
363 |
**Chat with the [R-help mailing list archives](https://stat.ethz.ch/pipermail/r-help/).**
|
364 |
+
An LLM turns your question into a search query, including year ranges and months, and generates an answer from the retrieved emails.
|
365 |
You can ask follow-up questions with the chat history as context.
|
366 |
β‘οΈ To clear the history and start a new chat, press the ποΈ clear button.
|
367 |
**_Answers may be incorrect._**
|
|
|
379 |
if compute_mode == "local":
|
380 |
status_text = f"""
|
381 |
π Now in **local** mode, using ZeroGPU hardware<br>
|
382 |
+
β Response time is about one minute<br>
|
383 |
+
π§ Thinking is enabled for query; add **/think** to enable thinking for answer</br>
|
384 |
β¨ [nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) and [{model_id.split("/")[-1]}](https://huggingface.co/{model_id})<br>
|
385 |
π See the project's [GitHub repository](https://github.com/jedick/R-help-chat)
|
386 |
"""
|
|
|
398 |
end = None
|
399 |
info_text = f"""
|
400 |
**Database:** {len(sources)} emails from {start} to {end}.
|
401 |
+
**Features:** RAG, today's date, hybrid search (dense+sparse), thinking display (local),
|
402 |
+
multiple retrievals per turn (remote), answer with citations (remote), chat memory.
|
403 |
**Tech:** LangChain + Hugging Face + Gradio; ChromaDB and BM25S-based retrievers.<br>
|
404 |
"""
|
405 |
return info_text
|
|
|
429 |
example_questions = [
|
430 |
# "What is today's date?",
|
431 |
"Summarize emails from the last two months",
|
432 |
+
"Advice on using plotmath /think",
|
433 |
"When was has.HLC mentioned?",
|
434 |
"Who reported installation problems in 2023-2024?",
|
435 |
]
|
mods/tool_calling_llm.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import re
|
2 |
import json
|
3 |
import uuid
|
|
|
4 |
from abc import ABC
|
5 |
from shutil import Error
|
6 |
from typing import (
|
@@ -145,6 +146,19 @@ def parse_response(message: BaseMessage) -> str:
|
|
145 |
raise ValueError(f"`message` is not an instance of `AIMessage`: {message}")
|
146 |
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
class ToolCallingLLM(BaseChatModel, ABC):
|
149 |
"""ToolCallingLLM mixin to enable tool calling features on non tool calling models.
|
150 |
|
@@ -239,7 +253,7 @@ class ToolCallingLLM(BaseChatModel, ABC):
|
|
239 |
""" # noqa: E501
|
240 |
|
241 |
tool_system_prompt_template: str = DEFAULT_SYSTEM_TEMPLATE
|
242 |
-
# Suffix to add to the system prompt that is not templated
|
243 |
system_message_suffix: str = ""
|
244 |
|
245 |
override_bind_tools: bool = True
|
@@ -301,7 +315,7 @@ class ToolCallingLLM(BaseChatModel, ABC):
|
|
301 |
system_message = system_message_prompt_template.format(
|
302 |
tools=json.dumps(functions, indent=2)
|
303 |
)
|
304 |
-
# Add extra context after the formatted system message
|
305 |
system_message = SystemMessage(
|
306 |
system_message.content + self.system_message_suffix
|
307 |
)
|
@@ -313,14 +327,22 @@ class ToolCallingLLM(BaseChatModel, ABC):
|
|
313 |
chat_generation_content = response_message.content
|
314 |
if not isinstance(chat_generation_content, str):
|
315 |
raise ValueError("ToolCallingLLM does not support non-string output.")
|
|
|
|
|
|
|
|
|
316 |
try:
|
317 |
parsed_chat_result = json.loads(chat_generation_content)
|
318 |
except json.JSONDecodeError:
|
319 |
try:
|
320 |
parsed_chat_result = parse_json_garbage(chat_generation_content)
|
321 |
except Exception:
|
|
|
322 |
return AIMessage(content=chat_generation_content)
|
323 |
|
|
|
|
|
|
|
324 |
called_tool_name = (
|
325 |
parsed_chat_result["tool"]
|
326 |
if "tool" in parsed_chat_result
|
@@ -349,10 +371,14 @@ class ToolCallingLLM(BaseChatModel, ABC):
|
|
349 |
elif "response" in parsed_chat_result:
|
350 |
response = parsed_chat_result["response"]
|
351 |
else:
|
352 |
-
raise ValueError(
|
353 |
-
|
354 |
-
|
355 |
-
|
|
|
|
|
|
|
|
|
356 |
return AIMessage(content=response)
|
357 |
|
358 |
called_tool_arguments = (
|
@@ -366,7 +392,7 @@ class ToolCallingLLM(BaseChatModel, ABC):
|
|
366 |
)
|
367 |
|
368 |
response_message_with_functions = AIMessage(
|
369 |
-
content="",
|
370 |
tool_calls=[
|
371 |
ToolCall(
|
372 |
name=called_tool_name,
|
|
|
1 |
import re
|
2 |
import json
|
3 |
import uuid
|
4 |
+
import warnings
|
5 |
from abc import ABC
|
6 |
from shutil import Error
|
7 |
from typing import (
|
|
|
146 |
raise ValueError(f"`message` is not an instance of `AIMessage`: {message}")
|
147 |
|
148 |
|
149 |
+
def extract_think(content):
|
150 |
+
# Added by Cursor 20250726 jmd
|
151 |
+
# Extract content within <think>...</think>
|
152 |
+
think_match = re.search(r"<think>(.*?)</think>", content, re.DOTALL)
|
153 |
+
think_text = think_match.group(1).strip() if think_match else ""
|
154 |
+
# Extract text after </think>
|
155 |
+
if think_match:
|
156 |
+
post_think = content[think_match.end() :].lstrip()
|
157 |
+
else:
|
158 |
+
post_think = content
|
159 |
+
return think_text, post_think
|
160 |
+
|
161 |
+
|
162 |
class ToolCallingLLM(BaseChatModel, ABC):
|
163 |
"""ToolCallingLLM mixin to enable tool calling features on non tool calling models.
|
164 |
|
|
|
253 |
""" # noqa: E501
|
254 |
|
255 |
tool_system_prompt_template: str = DEFAULT_SYSTEM_TEMPLATE
|
256 |
+
# Suffix to add to the system prompt that is not templated 20250717 jmd
|
257 |
system_message_suffix: str = ""
|
258 |
|
259 |
override_bind_tools: bool = True
|
|
|
315 |
system_message = system_message_prompt_template.format(
|
316 |
tools=json.dumps(functions, indent=2)
|
317 |
)
|
318 |
+
# Add extra context after the formatted system message 20250717 jmd
|
319 |
system_message = SystemMessage(
|
320 |
system_message.content + self.system_message_suffix
|
321 |
)
|
|
|
327 |
chat_generation_content = response_message.content
|
328 |
if not isinstance(chat_generation_content, str):
|
329 |
raise ValueError("ToolCallingLLM does not support non-string output.")
|
330 |
+
|
331 |
+
# Extract <think>...</think> content and text after </think> for further processing 20250726 jmd
|
332 |
+
think_text, chat_generation_content = extract_think(chat_generation_content)
|
333 |
+
|
334 |
try:
|
335 |
parsed_chat_result = json.loads(chat_generation_content)
|
336 |
except json.JSONDecodeError:
|
337 |
try:
|
338 |
parsed_chat_result = parse_json_garbage(chat_generation_content)
|
339 |
except Exception:
|
340 |
+
warnings.warn(f"Failed to parse JSON from {self.model} output")
|
341 |
return AIMessage(content=chat_generation_content)
|
342 |
|
343 |
+
print("parsed_chat_result")
|
344 |
+
print(parsed_chat_result)
|
345 |
+
|
346 |
called_tool_name = (
|
347 |
parsed_chat_result["tool"]
|
348 |
if "tool" in parsed_chat_result
|
|
|
371 |
elif "response" in parsed_chat_result:
|
372 |
response = parsed_chat_result["response"]
|
373 |
else:
|
374 |
+
# raise ValueError(
|
375 |
+
# f"Failed to parse a response from {self.model} output: " # type: ignore[attr-defined]
|
376 |
+
# # Keep this commented for privacy in deployed app 20250727 jmd
|
377 |
+
# # f"{chat_generation_content}"
|
378 |
+
# )
|
379 |
+
# Change to warning and return the generated content 20250727 jmd
|
380 |
+
warnings.warn(f"Failed to parse a response from {self.model} output")
|
381 |
+
response = chat_generation_content
|
382 |
return AIMessage(content=response)
|
383 |
|
384 |
called_tool_arguments = (
|
|
|
392 |
)
|
393 |
|
394 |
response_message_with_functions = AIMessage(
|
395 |
+
content=f"<think>\n{think_text}\n</think>",
|
396 |
tool_calls=[
|
397 |
ToolCall(
|
398 |
name=called_tool_name,
|