Spaces:
Running
on
Zero
Running
on
Zero
jedick
commited on
Commit
Β·
cc5c14d
1
Parent(s):
f8c72d3
Lower @spaces.GPU duration
Browse files
app.py
CHANGED
@@ -196,7 +196,7 @@ def to_workflow(request: gr.Request, *args):
|
|
196 |
yield value
|
197 |
|
198 |
|
199 |
-
@spaces.GPU(duration=
|
200 |
def run_workflow_local(*args):
|
201 |
for value in run_workflow(*args):
|
202 |
yield value
|
@@ -356,7 +356,7 @@ with gr.Blocks(
|
|
356 |
status_text = f"""
|
357 |
π Now in **local** mode, using ZeroGPU hardware<br>
|
358 |
β Response time is around 2 minutes<br>
|
359 |
-
β¨ [Nomic](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) embeddings and [{model_id}](https://huggingface.co/{model_id})
|
360 |
π See the project's [GitHub repository](https://github.com/jedick/R-help-chat)
|
361 |
"""
|
362 |
return status_text
|
@@ -404,7 +404,7 @@ with gr.Blocks(
|
|
404 |
example_questions = [
|
405 |
# "What is today's date?",
|
406 |
"Summarize emails from the last two months",
|
407 |
-
"
|
408 |
"When was has.HLC mentioned?",
|
409 |
"Who reported installation problems in 2023-2024?",
|
410 |
]
|
|
|
196 |
yield value
|
197 |
|
198 |
|
199 |
+
@spaces.GPU(duration=60)
|
200 |
def run_workflow_local(*args):
|
201 |
for value in run_workflow(*args):
|
202 |
yield value
|
|
|
356 |
status_text = f"""
|
357 |
π Now in **local** mode, using ZeroGPU hardware<br>
|
358 |
β Response time is around 2 minutes<br>
|
359 |
+
β¨ [Nomic](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) embeddings and [{model_id}](https://huggingface.co/{model_id})<br>
|
360 |
π See the project's [GitHub repository](https://github.com/jedick/R-help-chat)
|
361 |
"""
|
362 |
return status_text
|
|
|
404 |
example_questions = [
|
405 |
# "What is today's date?",
|
406 |
"Summarize emails from the last two months",
|
407 |
+
"How to use plotmath?",
|
408 |
"When was has.HLC mentioned?",
|
409 |
"Who reported installation problems in 2023-2024?",
|
410 |
]
|
graph.py
CHANGED
@@ -223,9 +223,9 @@ def BuildGraph(
|
|
223 |
if is_local:
|
224 |
# Don't include the system message here because it's defined in ToolCallingLLM
|
225 |
messages = state["messages"]
|
226 |
-
print_message_summaries(messages, "--- query: before normalization ---")
|
227 |
messages = normalize_messages(messages)
|
228 |
-
print_message_summaries(messages, "--- query: after normalization ---")
|
229 |
else:
|
230 |
messages = [SystemMessage(query_prompt(compute_mode))] + state["messages"]
|
231 |
response = query_model.invoke(messages)
|
@@ -236,13 +236,13 @@ def BuildGraph(
|
|
236 |
"""Generates an answer with the chat model"""
|
237 |
if is_local:
|
238 |
messages = state["messages"]
|
239 |
-
print_message_summaries(messages, "--- generate: before normalization ---")
|
240 |
messages = normalize_messages(messages)
|
241 |
# Add the system message here because we're not using tools
|
242 |
messages = [
|
243 |
SystemMessage(generate_prompt(with_tools=False, think=False))
|
244 |
] + messages
|
245 |
-
print_message_summaries(messages, "--- generate: after normalization ---")
|
246 |
else:
|
247 |
messages = [SystemMessage(generate_prompt())] + state["messages"]
|
248 |
response = generate_model.invoke(messages)
|
|
|
223 |
if is_local:
|
224 |
# Don't include the system message here because it's defined in ToolCallingLLM
|
225 |
messages = state["messages"]
|
226 |
+
# print_message_summaries(messages, "--- query: before normalization ---")
|
227 |
messages = normalize_messages(messages)
|
228 |
+
# print_message_summaries(messages, "--- query: after normalization ---")
|
229 |
else:
|
230 |
messages = [SystemMessage(query_prompt(compute_mode))] + state["messages"]
|
231 |
response = query_model.invoke(messages)
|
|
|
236 |
"""Generates an answer with the chat model"""
|
237 |
if is_local:
|
238 |
messages = state["messages"]
|
239 |
+
# print_message_summaries(messages, "--- generate: before normalization ---")
|
240 |
messages = normalize_messages(messages)
|
241 |
# Add the system message here because we're not using tools
|
242 |
messages = [
|
243 |
SystemMessage(generate_prompt(with_tools=False, think=False))
|
244 |
] + messages
|
245 |
+
# print_message_summaries(messages, "--- generate: after normalization ---")
|
246 |
else:
|
247 |
messages = [SystemMessage(generate_prompt())] + state["messages"]
|
248 |
response = generate_model.invoke(messages)
|