Spaces:
Paused
Paused
jeevan
commited on
Commit
·
4a0c158
0
Parent(s):
Locally working lcel rag
Browse files- .chainlit/config.toml +84 -0
- .gitignore +8 -0
- Chunking.py +68 -0
- Dockerfile +9 -0
- app.py +125 -0
- chainlit.md +3 -0
- requirements.txt +15 -0
.chainlit/config.toml
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
# Whether to enable telemetry (default: true). No personal data is collected.
|
3 |
+
enable_telemetry = true
|
4 |
+
|
5 |
+
# List of environment variables to be provided by each user to use the app.
|
6 |
+
user_env = []
|
7 |
+
|
8 |
+
# Duration (in seconds) during which the session is saved when the connection is lost
|
9 |
+
session_timeout = 3600
|
10 |
+
|
11 |
+
# Enable third parties caching (e.g LangChain cache)
|
12 |
+
cache = false
|
13 |
+
|
14 |
+
# Follow symlink for asset mount (see https://github.com/Chainlit/chainlit/issues/317)
|
15 |
+
# follow_symlink = false
|
16 |
+
|
17 |
+
[features]
|
18 |
+
# Show the prompt playground
|
19 |
+
prompt_playground = true
|
20 |
+
|
21 |
+
# Process and display HTML in messages. This can be a security risk (see https://stackoverflow.com/questions/19603097/why-is-it-dangerous-to-render-user-generated-html-or-javascript)
|
22 |
+
unsafe_allow_html = false
|
23 |
+
|
24 |
+
# Process and display mathematical expressions. This can clash with "$" characters in messages.
|
25 |
+
latex = false
|
26 |
+
|
27 |
+
# Authorize users to upload files with messages
|
28 |
+
multi_modal = true
|
29 |
+
|
30 |
+
# Allows user to use speech to text
|
31 |
+
[features.speech_to_text]
|
32 |
+
enabled = false
|
33 |
+
# See all languages here https://github.com/JamesBrill/react-speech-recognition/blob/HEAD/docs/API.md#language-string
|
34 |
+
# language = "en-US"
|
35 |
+
|
36 |
+
[UI]
|
37 |
+
# Name of the app and chatbot.
|
38 |
+
name = "Chatbot"
|
39 |
+
|
40 |
+
# Show the readme while the conversation is empty.
|
41 |
+
show_readme_as_default = true
|
42 |
+
|
43 |
+
# Description of the app and chatbot. This is used for HTML tags.
|
44 |
+
# description = ""
|
45 |
+
|
46 |
+
# Large size content are by default collapsed for a cleaner ui
|
47 |
+
default_collapse_content = true
|
48 |
+
|
49 |
+
# The default value for the expand messages settings.
|
50 |
+
default_expand_messages = false
|
51 |
+
|
52 |
+
# Hide the chain of thought details from the user in the UI.
|
53 |
+
hide_cot = false
|
54 |
+
|
55 |
+
# Link to your github repo. This will add a github button in the UI's header.
|
56 |
+
# github = ""
|
57 |
+
|
58 |
+
# Specify a CSS file that can be used to customize the user interface.
|
59 |
+
# The CSS file can be served from the public directory or via an external link.
|
60 |
+
# custom_css = "/public/test.css"
|
61 |
+
|
62 |
+
# Override default MUI light theme. (Check theme.ts)
|
63 |
+
[UI.theme.light]
|
64 |
+
#background = "#FAFAFA"
|
65 |
+
#paper = "#FFFFFF"
|
66 |
+
|
67 |
+
[UI.theme.light.primary]
|
68 |
+
#main = "#F80061"
|
69 |
+
#dark = "#980039"
|
70 |
+
#light = "#FFE7EB"
|
71 |
+
|
72 |
+
# Override default MUI dark theme. (Check theme.ts)
|
73 |
+
[UI.theme.dark]
|
74 |
+
#background = "#FAFAFA"
|
75 |
+
#paper = "#FFFFFF"
|
76 |
+
|
77 |
+
[UI.theme.dark.primary]
|
78 |
+
#main = "#F80061"
|
79 |
+
#dark = "#980039"
|
80 |
+
#light = "#FFE7EB"
|
81 |
+
|
82 |
+
|
83 |
+
[meta]
|
84 |
+
generated_by = "0.7.700"
|
.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
venv/*
|
2 |
+
.env
|
3 |
+
__pycache__/app.cpython-39.pyc
|
4 |
+
__pycache__/app.cpython-311.pyc
|
5 |
+
__pycache__/Chunking.cpython-39.pyc
|
6 |
+
__pycache__/Chunking.cpython-311.pyc
|
7 |
+
.vscode/launch.json
|
8 |
+
.vscode/settings.json
|
Chunking.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from langchain_community.document_loaders import PyPDFLoader,TextLoader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter,NLTKTextSplitter,SpacyTextSplitter
|
4 |
+
separators=[
|
5 |
+
"\n\n",
|
6 |
+
"\n",
|
7 |
+
" ",
|
8 |
+
".",
|
9 |
+
",",
|
10 |
+
"\u200b", # Zero-width space
|
11 |
+
"\uff0c", # Fullwidth comma
|
12 |
+
"\u3001", # Ideographic comma
|
13 |
+
"\uff0e", # Fullwidth full stop
|
14 |
+
"\u3002", # Ideographic full stop
|
15 |
+
"",
|
16 |
+
]
|
17 |
+
|
18 |
+
class ChunkingStrategy(Enum):
|
19 |
+
RECURSIVE_CHARACTER_CHAR_SPLITTER = "recursive_character_char_splitter"
|
20 |
+
NLTK_TEXT_SPLITTER = "nltk_text_splitter"
|
21 |
+
SPACY_TEXT_SPLITTER = "spacy_text_splitter"
|
22 |
+
|
23 |
+
class TextLoaderAndSplitterWrapper:
|
24 |
+
def __init__(self, strategy: ChunkingStrategy, file_path:str):
|
25 |
+
# Defaults
|
26 |
+
self.splitter = None
|
27 |
+
self.documents = []
|
28 |
+
|
29 |
+
# Determine with splitter strategy to use from parameter
|
30 |
+
if strategy == ChunkingStrategy.RECURSIVE_CHARACTER_CHAR_SPLITTER:
|
31 |
+
self.splitter = RecursiveCharacterTextSplitter(separators=separators)
|
32 |
+
elif strategy == ChunkingStrategy.NLTK_TEXT_SPLITTER:
|
33 |
+
self.splitter = NLTKTextSplitter()
|
34 |
+
elif strategy == ChunkingStrategy.SPACY_TEXT_SPLITTER:
|
35 |
+
self.splitter = SpacyTextSplitter()
|
36 |
+
else:
|
37 |
+
raise ValueError(f"Unknown strategy: {strategy}")
|
38 |
+
|
39 |
+
# Load the document and chunk it
|
40 |
+
self.file_path = file_path
|
41 |
+
|
42 |
+
|
43 |
+
def load_documents(self):
|
44 |
+
if self.file_path.endswith(".pdf"):
|
45 |
+
# Use PDF loader
|
46 |
+
pdf_loader = PyPDFLoader(self.file_path)
|
47 |
+
self.documents = pdf_loader.load_and_split(text_splitter=self.splitter) # Defaults to RecursiveCharacterTextSplitter.
|
48 |
+
return self.documents
|
49 |
+
elif self.file_path.endswith(".txt"):
|
50 |
+
# Use Text loader
|
51 |
+
text_loader = TextLoader(self.file_path)
|
52 |
+
self.documents = text_loader.load_and_split(text_splitter=self.splitter)
|
53 |
+
return self.documents
|
54 |
+
else:
|
55 |
+
raise ValueError(f"Unknown file type: {self.file_path}")
|
56 |
+
|
57 |
+
|
58 |
+
def split(self, text: str):
|
59 |
+
return self.splitter.split(text)
|
60 |
+
|
61 |
+
def join(self, chunks: list):
|
62 |
+
return self.splitter.join(chunks)
|
63 |
+
|
64 |
+
def __str__(self):
|
65 |
+
return f"TextLoaderAndSplitterWrapper(splitter={self.splitter})"
|
66 |
+
|
67 |
+
def __repr__(self):
|
68 |
+
return str(self)
|
Dockerfile
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
RUN useradd -m -u 1000 user
|
3 |
+
USER user
|
4 |
+
ENV HOME=/home/user \
|
5 |
+
PATH=/home/user/.local/bin:$PATH
|
6 |
+
WORKDIR $HOME/app
|
7 |
+
COPY --chown=user . $HOME/app
|
8 |
+
RUN pip install -r requirements.txt
|
9 |
+
CMD ["chainlit", "run", "app.py", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
from operator import itemgetter
|
4 |
+
from Chunking import ChunkingStrategy, TextLoaderAndSplitterWrapper
|
5 |
+
|
6 |
+
from langchain.schema.runnable import RunnablePassthrough
|
7 |
+
from langchain_openai import ChatOpenAI
|
8 |
+
from langchain_openai.embeddings import OpenAIEmbeddings
|
9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
10 |
+
from langchain_community.vectorstores import Qdrant
|
11 |
+
|
12 |
+
import chainlit as cl
|
13 |
+
from chainlit.types import AskFileResponse
|
14 |
+
from chainlit.cli import run_chainlit
|
15 |
+
|
16 |
+
import tempfile
|
17 |
+
|
18 |
+
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
|
19 |
+
GPT_MODEL = "gpt-4o-mini"
|
20 |
+
|
21 |
+
# Utility functions
|
22 |
+
def save_file(file: AskFileResponse,file_ext:str) -> str:
|
23 |
+
if file_ext == "application/pdf":
|
24 |
+
file_ext = ".pdf"
|
25 |
+
elif file_ext == "text/plain":
|
26 |
+
file_ext = ".txt"
|
27 |
+
else:
|
28 |
+
raise ValueError(f"Unknown file type: {file_ext}")
|
29 |
+
|
30 |
+
with tempfile.NamedTemporaryFile(
|
31 |
+
mode="wb", delete=False, suffix=file_ext
|
32 |
+
) as temp_file:
|
33 |
+
temp_file_path = temp_file.name
|
34 |
+
temp_file.write(file.content)
|
35 |
+
return temp_file_path
|
36 |
+
|
37 |
+
|
38 |
+
# Prepare the components that will form the chain
|
39 |
+
|
40 |
+
## Step 1: Create a prompt template
|
41 |
+
base_rag_prompt_template = """\
|
42 |
+
You are a helpful assistant that can answer questions related to the provided context. Repond I don't have that information if outside context.
|
43 |
+
|
44 |
+
Context:
|
45 |
+
{context}
|
46 |
+
|
47 |
+
Question:
|
48 |
+
{question}
|
49 |
+
"""
|
50 |
+
|
51 |
+
base_rag_prompt = ChatPromptTemplate.from_template(base_rag_prompt_template)
|
52 |
+
|
53 |
+
## Step 2: Create Embeddings model instance for creating embeddings
|
54 |
+
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small")
|
55 |
+
|
56 |
+
## Step 2: Create the OpenAI chat model
|
57 |
+
base_llm = ChatOpenAI(model="gpt-4o-mini", tags=["base_llm"])
|
58 |
+
|
59 |
+
|
60 |
+
@cl.on_chat_start
|
61 |
+
async def on_chat_start():
|
62 |
+
|
63 |
+
msg = cl.Message(content="Welcome to the Chat with Files app powered by LCEL and OpenAI - RAG!")
|
64 |
+
await msg.send()
|
65 |
+
|
66 |
+
files = None
|
67 |
+
documents = None
|
68 |
+
# Wait for the user to upload a file
|
69 |
+
while files == None:
|
70 |
+
files = await cl.AskFileMessage(
|
71 |
+
content="Please upload a text or a pdf file to begin!",
|
72 |
+
accept=["text/plain", "application/pdf"],
|
73 |
+
max_size_mb=10,
|
74 |
+
max_files=1,
|
75 |
+
timeout=180,
|
76 |
+
).send()
|
77 |
+
|
78 |
+
## Load file and split into chunks
|
79 |
+
msg = cl.Message(content=f"Processing `{files[0].name}`...")
|
80 |
+
await msg.send()
|
81 |
+
current_file_path = save_file(files[0], files[0].type)
|
82 |
+
loader_splitter = TextLoaderAndSplitterWrapper(ChunkingStrategy.RECURSIVE_CHARACTER_CHAR_SPLITTER, current_file_path)
|
83 |
+
documents = loader_splitter.load_documents()
|
84 |
+
|
85 |
+
## Vectorising the documents
|
86 |
+
qdrant_vectorstore = Qdrant.from_documents(
|
87 |
+
documents=documents,
|
88 |
+
embedding=embedding_model,
|
89 |
+
location=":memory:"
|
90 |
+
)
|
91 |
+
qdrant_retriever = qdrant_vectorstore.as_retriever()
|
92 |
+
|
93 |
+
# create the chain on new chart session
|
94 |
+
retrieval_augmented_qa_chain = (
|
95 |
+
# INVOKE CHAIN WITH: {"question" : "<<SOME USER QUESTION>>"}
|
96 |
+
# "question" : populated by getting the value of the "question" key
|
97 |
+
# "context" : populated by getting the value of the "question" key and chaining it into the base_retriever
|
98 |
+
{"context": itemgetter("question") | qdrant_retriever, "question": itemgetter("question")}
|
99 |
+
# "context" : is assigned to a RunnablePassthrough object (will not be called or considered in the next step)
|
100 |
+
# by getting the value of the "context" key from the previous step
|
101 |
+
| RunnablePassthrough.assign(context=itemgetter("context"))
|
102 |
+
# "response" : the "context" and "question" values are used to format our prompt object and then piped
|
103 |
+
# into the LLM and stored in a key called "response"
|
104 |
+
# "context" : populated by getting the value of the "context" key from the previous step
|
105 |
+
| {"response": base_rag_prompt | base_llm, "context": itemgetter("context")}
|
106 |
+
)
|
107 |
+
|
108 |
+
# Let the user know that the system is ready
|
109 |
+
msg = cl.Message(content=f"Processing `{files[0].name}` done. You can now ask questions!")
|
110 |
+
await msg.send()
|
111 |
+
|
112 |
+
cl.user_session.set("chain", retrieval_augmented_qa_chain)
|
113 |
+
|
114 |
+
|
115 |
+
@cl.on_message
|
116 |
+
async def main(message: cl.Message):
|
117 |
+
chain = cl.user_session.get("chain")
|
118 |
+
msg = cl.Message(content="")
|
119 |
+
response = chain.invoke({"question": message.content})
|
120 |
+
msg.content= response["response"].content
|
121 |
+
await msg.send()
|
122 |
+
cl.user_session.set("chain", chain)
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
run_chainlit(__file__)
|
chainlit.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Welcome to Chat with Your Text File
|
2 |
+
|
3 |
+
With this application, you can chat with an uploaded text file that is smaller than 2MB!
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langsmith
|
2 |
+
langchain_core
|
3 |
+
langchain_openai
|
4 |
+
langchain_community
|
5 |
+
langchain-text-splitters
|
6 |
+
langchain-qdrant
|
7 |
+
qdrant-client
|
8 |
+
openai
|
9 |
+
tiktoken
|
10 |
+
cohere
|
11 |
+
lxml
|
12 |
+
pymupdf
|
13 |
+
pypdf
|
14 |
+
|
15 |
+
chainlit==0.7.700
|