PythonicRAG / RagPipeline.py
jeevan
working local version
4c501f4
from aimakerspace.openai_utils.prompts import (
UserRolePrompt,
SystemRolePrompt,
AssistantRolePrompt,
)
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
class RetrievalAugmentedQAPipeline:
def __init__(
self,
system_role_prompt: SystemRolePrompt,
user_role_prompt: UserRolePrompt,
llm: ChatOpenAI(),
vector_db_retriever: VectorDatabase,
) -> None:
self.system_role_prompt = system_role_prompt
self.user_role_prompt = user_role_prompt
self.llm = llm
self.vector_db_retriever = vector_db_retriever
async def arun_pipeline(self, user_query: str):
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
context_prompt = ""
for context in context_list:
context_prompt += context[0] + "\n"
formatted_system_prompt = self.system_role_prompt.create_message()
formatted_user_prompt = self.user_role_prompt.create_message(
question=user_query, context=context_prompt
)
async def generate_response():
async for chunk in self.llm.astream(
[formatted_system_prompt, formatted_user_prompt]
):
yield chunk
return {"response": generate_response(), "context": context_list}