Spaces:
Sleeping
Sleeping
import os | |
from openai import AsyncOpenAI | |
from RagPipeline import RetrievalAugmentedQAPipeline | |
from typing import List | |
from chainlit.types import AskFileResponse | |
from chainlit.cli import run_chainlit | |
from aimakerspace.text_utils import CharacterTextSplitter, PdfFileLoader, TextFileLoader | |
from aimakerspace.openai_utils.prompts import ( | |
UserRolePrompt, | |
SystemRolePrompt, | |
AssistantRolePrompt, | |
) | |
from aimakerspace.openai_utils.embedding import EmbeddingModel | |
from aimakerspace.vectordatabase import VectorDatabase, VectorDatabaseOptions | |
from aimakerspace.openai_utils.chatmodel import ChatOpenAI | |
import chainlit as cl | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
# Instrument the OpenAI client | |
# cl.instrument_openai() | |
##### Prompt Templates ##### | |
system_template = """\ | |
Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer.""" | |
user_prompt_template = """\ | |
Context: | |
{context} | |
Question: | |
{question} | |
""" | |
system_role_prompt = SystemRolePrompt(system_template) | |
user_role_prompt = UserRolePrompt(user_prompt_template) | |
### Text Chunking ### | |
# text_splitter = CharacterTextSplitter() | |
text_splitter = RecursiveCharacterTextSplitter( | |
separators=[ | |
"\n\n", | |
"\n", | |
" ", | |
".", | |
",", | |
"\u200b", # Zero-width space | |
"\uff0c", # Fullwidth comma | |
"\u3001", # Ideographic comma | |
"\uff0e", # Fullwidth full stop | |
"\u3002", # Ideographic full stop | |
"", | |
], | |
) | |
def process_text_file(file: AskFileResponse) -> List[str]: | |
import tempfile | |
with tempfile.NamedTemporaryFile( | |
mode="wb", delete=False, suffix=".txt" | |
) as temp_file: | |
temp_file_path = temp_file.name | |
temp_file.write(file.content) | |
text_loader = TextFileLoader(temp_file_path) | |
documents = text_loader.load_documents() | |
texts = [] | |
for doc in documents: | |
texts += text_splitter.split_text(doc) | |
return texts | |
def process_pdf_file(file: AskFileResponse) -> List[str]: | |
import tempfile | |
with tempfile.NamedTemporaryFile( | |
mode="wb", delete=False, suffix=".pdf" | |
) as temp_file: | |
temp_file_path = temp_file.name | |
temp_file.write(file.content) | |
pdf_loader = PdfFileLoader(temp_file_path) | |
texts = pdf_loader.load_documents() # Also handles splitting the text in this case pages | |
return texts | |
async def send_new_message(content, elemets=None): | |
msg = cl.Message(content,elements=elemets) | |
await msg.send() | |
return msg | |
async def on_chat_start(): | |
print("On Chat Start") | |
# await send_new_message("Welcome to the Chat with Files app!") | |
msg = cl.Message(content="Welcome to the Chat with Files app!") | |
await msg.send() | |
print("After First message") | |
files = None | |
# Wait for the user to upload a file | |
while files == None: | |
files = await cl.AskFileMessage( | |
content="Please upload a text file to begin!", | |
accept=["text/plain", "application/pdf"], | |
max_size_mb=10, | |
max_files=4, | |
timeout=180, | |
).send() | |
texts : List[str] = [] | |
for file in files: | |
if file.type == "application/pdf": | |
texts += process_pdf_file(file) | |
if file.type == "text/plain": | |
texts += process_text_file(file) | |
# await send_new_message(content=f"Processing `{file.name}`...") | |
msg = cl.Message(content=f"Processing `{file.name}`...") | |
await msg.send() | |
print(f"Processing {len(texts)} text chunks") | |
# Create a dict vector store | |
vector_db_options =VectorDatabaseOptions.QDRANT | |
embedding_model = EmbeddingModel(embeddings_model_name= "text-embedding-3-small",dimensions=1000) | |
vector_db = VectorDatabase(vector_db_options,embedding_model) | |
vector_db = await vector_db.abuild_from_list(texts) | |
chat_openai = ChatOpenAI() | |
# Create a chain | |
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(system_role_prompt, user_role_prompt, | |
vector_db_retriever=vector_db, llm=chat_openai | |
) | |
# Let the user know that the system is ready | |
msg = cl.Message(content=f"Processing `{file.name}` done. You can now ask questions!") | |
await msg.send() | |
cl.user_session.set("chain", retrieval_augmented_qa_pipeline) | |
async def main(message: cl.Message): | |
msg = cl.Message(content="on message") | |
await msg.send() | |
chain :RetrievalAugmentedQAPipeline = cl.user_session.get("chain") | |
msg = cl.Message(content="") | |
result = await chain.arun_pipeline(message.content) | |
async for stream_resp in result.get('response'): | |
await msg.stream_token(stream_resp) | |
await msg.send() | |
cl.user_session.set("chain", chain) | |
if __name__ == "__main__": | |
run_chainlit(__file__) | |