Spaces:
Sleeping
Sleeping
jeevan
commited on
Commit
·
249d2c8
1
Parent(s):
abaf897
versions pinned
Browse files- Dockerfile +1 -1
- aimakerspace/openai_utils/embedding.py +13 -5
- aimakerspace/text_utils.py +35 -17
- aimakerspace/vectordatabase.py +86 -7
- app.py +94 -57
- requirements.txt +5 -5
Dockerfile
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
FROM python:3.9
|
2 |
RUN useradd -m -u 1000 user
|
3 |
USER user
|
4 |
ENV HOME=/home/user \
|
|
|
1 |
+
FROM python:3.11.9
|
2 |
RUN useradd -m -u 1000 user
|
3 |
USER user
|
4 |
ENV HOME=/home/user \
|
aimakerspace/openai_utils/embedding.py
CHANGED
@@ -7,11 +7,12 @@ import asyncio
|
|
7 |
|
8 |
|
9 |
class EmbeddingModel:
|
10 |
-
def __init__(self, embeddings_model_name: str = "text-embedding-3-small"):
|
11 |
load_dotenv()
|
12 |
self.openai_api_key = os.getenv("OPENAI_API_KEY")
|
13 |
self.async_client = AsyncOpenAI()
|
14 |
self.client = OpenAI()
|
|
|
15 |
|
16 |
if self.openai_api_key is None:
|
17 |
raise ValueError(
|
@@ -22,28 +23,35 @@ class EmbeddingModel:
|
|
22 |
|
23 |
async def async_get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
|
24 |
embedding_response = await self.async_client.embeddings.create(
|
25 |
-
input=list_of_text, model=self.embeddings_model_name
|
26 |
)
|
27 |
|
28 |
return [embeddings.embedding for embeddings in embedding_response.data]
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
async def async_get_embedding(self, text: str) -> List[float]:
|
31 |
embedding = await self.async_client.embeddings.create(
|
32 |
-
input=text, model=self.embeddings_model_name
|
33 |
)
|
34 |
|
35 |
return embedding.data[0].embedding
|
36 |
|
37 |
def get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
|
38 |
embedding_response = self.client.embeddings.create(
|
39 |
-
input=list_of_text, model=self.embeddings_model_name
|
40 |
)
|
41 |
|
42 |
return [embeddings.embedding for embeddings in embedding_response.data]
|
43 |
|
44 |
def get_embedding(self, text: str) -> List[float]:
|
45 |
embedding = self.client.embeddings.create(
|
46 |
-
input=text, model=self.embeddings_model_name
|
47 |
)
|
48 |
|
49 |
return embedding.data[0].embedding
|
|
|
7 |
|
8 |
|
9 |
class EmbeddingModel:
|
10 |
+
def __init__(self, embeddings_model_name: str = "text-embedding-3-small", dimensions: int = None):
|
11 |
load_dotenv()
|
12 |
self.openai_api_key = os.getenv("OPENAI_API_KEY")
|
13 |
self.async_client = AsyncOpenAI()
|
14 |
self.client = OpenAI()
|
15 |
+
self.dimensions = dimensions
|
16 |
|
17 |
if self.openai_api_key is None:
|
18 |
raise ValueError(
|
|
|
23 |
|
24 |
async def async_get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
|
25 |
embedding_response = await self.async_client.embeddings.create(
|
26 |
+
input=list_of_text, model=self.embeddings_model_name, dimensions=self.dimensions
|
27 |
)
|
28 |
|
29 |
return [embeddings.embedding for embeddings in embedding_response.data]
|
30 |
|
31 |
+
async def async_get_embeddings_openai(self, list_of_text: List[str]) :
|
32 |
+
embedding_response = await self.async_client.embeddings.create(
|
33 |
+
input=list_of_text, model=self.embeddings_model_name, dimensions=self.dimensions
|
34 |
+
)
|
35 |
+
|
36 |
+
return embedding_response
|
37 |
+
|
38 |
async def async_get_embedding(self, text: str) -> List[float]:
|
39 |
embedding = await self.async_client.embeddings.create(
|
40 |
+
input=text, model=self.embeddings_model_name, dimensions=self.dimensions
|
41 |
)
|
42 |
|
43 |
return embedding.data[0].embedding
|
44 |
|
45 |
def get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
|
46 |
embedding_response = self.client.embeddings.create(
|
47 |
+
input=list_of_text, model=self.embeddings_model_name, dimensions=self.dimensions
|
48 |
)
|
49 |
|
50 |
return [embeddings.embedding for embeddings in embedding_response.data]
|
51 |
|
52 |
def get_embedding(self, text: str) -> List[float]:
|
53 |
embedding = self.client.embeddings.create(
|
54 |
+
input=text, model=self.embeddings_model_name, dimensions=self.dimensions
|
55 |
)
|
56 |
|
57 |
return embedding.data[0].embedding
|
aimakerspace/text_utils.py
CHANGED
@@ -1,6 +1,8 @@
|
|
|
|
|
|
1 |
import os
|
2 |
from typing import List
|
3 |
-
|
4 |
|
5 |
class TextFileLoader:
|
6 |
def __init__(self, path: str, encoding: str = "utf-8"):
|
@@ -35,8 +37,39 @@ class TextFileLoader:
|
|
35 |
self.load()
|
36 |
return self.documents
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
class CharacterTextSplitter:
|
40 |
def __init__(
|
41 |
self,
|
42 |
chunk_size: int = 1000,
|
@@ -60,18 +93,3 @@ class CharacterTextSplitter:
|
|
60 |
for text in texts:
|
61 |
chunks.extend(self.split(text))
|
62 |
return chunks
|
63 |
-
|
64 |
-
|
65 |
-
if __name__ == "__main__":
|
66 |
-
loader = TextFileLoader("data/KingLear.txt")
|
67 |
-
loader.load()
|
68 |
-
splitter = CharacterTextSplitter()
|
69 |
-
chunks = splitter.split_texts(loader.documents)
|
70 |
-
print(len(chunks))
|
71 |
-
print(chunks[0])
|
72 |
-
print("--------")
|
73 |
-
print(chunks[1])
|
74 |
-
print("--------")
|
75 |
-
print(chunks[-2])
|
76 |
-
print("--------")
|
77 |
-
print(chunks[-1])
|
|
|
1 |
+
# aimakerspace.text_utils.py
|
2 |
+
|
3 |
import os
|
4 |
from typing import List
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
6 |
|
7 |
class TextFileLoader:
|
8 |
def __init__(self, path: str, encoding: str = "utf-8"):
|
|
|
37 |
self.load()
|
38 |
return self.documents
|
39 |
|
40 |
+
class PdfFileLoader:
|
41 |
+
def __init__(self, path: str):
|
42 |
+
self.documents = []
|
43 |
+
self.path = path
|
44 |
+
|
45 |
+
def load(self):
|
46 |
+
if os.path.isdir(self.path):
|
47 |
+
self.load_directory()
|
48 |
+
elif os.path.isfile(self.path) and self.path.endswith(".pdf"):
|
49 |
+
self.load_file()
|
50 |
+
else:
|
51 |
+
raise ValueError(
|
52 |
+
"Provided path is neither a valid directory nor a .pdf file."
|
53 |
+
)
|
54 |
+
|
55 |
+
def load_file(self):
|
56 |
+
pdf_loader = PyPDFLoader(self.path)
|
57 |
+
pdf_pages = pdf_loader.load_and_split() # Defaults to RecursiveCharacterTextSplitter.
|
58 |
+
self.documents = [page.page_content for page in pdf_pages]
|
59 |
+
|
60 |
+
def load_directory(self):
|
61 |
+
for root, _, files in os.walk(self.path):
|
62 |
+
for file in files:
|
63 |
+
if file.endswith(".pdf"):
|
64 |
+
pdf_loader = PyPDFLoader(file.path)
|
65 |
+
pdf_pages = pdf_loader.load_and_split()
|
66 |
+
self.documents.append([page.page_content for page in pdf_pages])
|
67 |
+
|
68 |
+
def load_documents(self):
|
69 |
+
self.load()
|
70 |
+
return self.documents
|
71 |
|
72 |
+
class CharacterTextSplitter():
|
73 |
def __init__(
|
74 |
self,
|
75 |
chunk_size: int = 1000,
|
|
|
93 |
for text in texts:
|
94 |
chunks.extend(self.split(text))
|
95 |
return chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aimakerspace/vectordatabase.py
CHANGED
@@ -1,9 +1,13 @@
|
|
|
|
1 |
import numpy as np
|
2 |
from collections import defaultdict
|
3 |
from typing import List, Tuple, Callable
|
4 |
from aimakerspace.openai_utils.embedding import EmbeddingModel
|
5 |
import asyncio
|
|
|
|
|
6 |
|
|
|
7 |
|
8 |
def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float:
|
9 |
"""Computes the cosine similarity between two vectors."""
|
@@ -13,10 +17,62 @@ def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float:
|
|
13 |
return dot_product / (norm_a * norm_b)
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
class VectorDatabase:
|
17 |
-
def __init__(
|
18 |
-
self
|
|
|
|
|
|
|
|
|
|
|
19 |
self.embedding_model = embedding_model or EmbeddingModel()
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def insert(self, key: str, vector: np.array) -> None:
|
22 |
self.vectors[key] = vector
|
@@ -41,16 +97,39 @@ class VectorDatabase:
|
|
41 |
return_as_text: bool = False,
|
42 |
) -> List[Tuple[str, float]]:
|
43 |
query_vector = self.embedding_model.get_embedding(query_text)
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def retrieve_from_key(self, key: str) -> np.array:
|
48 |
return self.vectors.get(key, None)
|
49 |
|
50 |
async def abuild_from_list(self, list_of_text: List[str]) -> "VectorDatabase":
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
return self
|
55 |
|
56 |
|
|
|
1 |
+
from enum import Enum
|
2 |
import numpy as np
|
3 |
from collections import defaultdict
|
4 |
from typing import List, Tuple, Callable
|
5 |
from aimakerspace.openai_utils.embedding import EmbeddingModel
|
6 |
import asyncio
|
7 |
+
from qdrant_client import models, QdrantClient
|
8 |
+
from qdrant_client.models import PointStruct,VectorParams,Distance
|
9 |
|
10 |
+
collection_name = "embedding_collection"
|
11 |
|
12 |
def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float:
|
13 |
"""Computes the cosine similarity between two vectors."""
|
|
|
17 |
return dot_product / (norm_a * norm_b)
|
18 |
|
19 |
|
20 |
+
def euclidean_distance(vector_a: np.array, vector_b: np.array) -> float:
|
21 |
+
"""Computes the Euclidean distance between two vectors."""
|
22 |
+
return np.sqrt(np.sum((vector_a - vector_b) ** 2))
|
23 |
+
|
24 |
+
|
25 |
+
def manhattan_distance(vector_a: np.array, vector_b: np.array) -> float:
|
26 |
+
"""Computes the Manhattan distance between two vectors."""
|
27 |
+
return np.sum(np.abs(vector_a - vector_b))
|
28 |
+
|
29 |
+
|
30 |
+
def minkowski_distance(vector_a: np.array, vector_b: np.array, p: float) -> float:
|
31 |
+
"""
|
32 |
+
Computes the Minkowski distance between two vectors.
|
33 |
+
|
34 |
+
Parameters:
|
35 |
+
vector_a (np.array): First vector.
|
36 |
+
vector_b (np.array): Second vector.
|
37 |
+
p (float): The order of the norm. For example, p=1 gives Manhattan distance, p=2 gives Euclidean distance.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
float: Minkowski distance between vector_a and vector_b.
|
41 |
+
"""
|
42 |
+
# Ensure the input vectors are NumPy arrays
|
43 |
+
vector_a = np.asarray(vector_a)
|
44 |
+
vector_b = np.asarray(vector_b)
|
45 |
+
|
46 |
+
# Compute Minkowski distance
|
47 |
+
distance = np.sum(np.abs(vector_a - vector_b) ** p) ** (1 / p)
|
48 |
+
return distance
|
49 |
+
|
50 |
+
|
51 |
+
class DistanceMeasure(Enum):
|
52 |
+
COSINE_SIMILARITY = cosine_similarity
|
53 |
+
EUCLIDEAN_DISTANCE = euclidean_distance
|
54 |
+
MANHATTAN_DISTANCE = manhattan_distance
|
55 |
+
MINKOWSKI_DISTANCE = minkowski_distance
|
56 |
+
|
57 |
+
|
58 |
+
class VectorDatabaseOptions(Enum):
|
59 |
+
DICTIONARY = "dictionary"
|
60 |
+
QDRANT = "qdrant"
|
61 |
+
|
62 |
+
|
63 |
class VectorDatabase:
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
vector_db_options: VectorDatabaseOptions,
|
67 |
+
embedding_model: EmbeddingModel = None,
|
68 |
+
):
|
69 |
+
self.vectors = None
|
70 |
+
self.vector_db_options = vector_db_options
|
71 |
self.embedding_model = embedding_model or EmbeddingModel()
|
72 |
+
if vector_db_options == VectorDatabaseOptions.DICTIONARY:
|
73 |
+
self.vectors = defaultdict(np.array)
|
74 |
+
if vector_db_options == VectorDatabaseOptions.QDRANT:
|
75 |
+
self.qdrant_client = QdrantClient(":memory:")
|
76 |
|
77 |
def insert(self, key: str, vector: np.array) -> None:
|
78 |
self.vectors[key] = vector
|
|
|
97 |
return_as_text: bool = False,
|
98 |
) -> List[Tuple[str, float]]:
|
99 |
query_vector = self.embedding_model.get_embedding(query_text)
|
100 |
+
if self.vector_db_options == VectorDatabaseOptions.DICTIONARY:
|
101 |
+
results = self.search(query_vector, k, distance_measure)
|
102 |
+
return [result[0] for result in results] if return_as_text else results
|
103 |
+
if self.vector_db_options == VectorDatabaseOptions.QDRANT:
|
104 |
+
search_result = self.qdrant_client.search(collection_name,query_vector=query_vector)
|
105 |
+
return [(point.payload["text"],point.score) for point in search_result]
|
106 |
|
107 |
def retrieve_from_key(self, key: str) -> np.array:
|
108 |
return self.vectors.get(key, None)
|
109 |
|
110 |
async def abuild_from_list(self, list_of_text: List[str]) -> "VectorDatabase":
|
111 |
+
if self.vector_db_options == VectorDatabaseOptions.DICTIONARY:
|
112 |
+
embeddings = await self.embedding_model.async_get_embeddings(list_of_text)
|
113 |
+
for text, embedding in zip(list_of_text, embeddings):
|
114 |
+
self.insert(text, np.array(embedding))
|
115 |
+
if self.vector_db_options == VectorDatabaseOptions.QDRANT:
|
116 |
+
embeddings_response = await self.embedding_model.async_get_embeddings_openai(list_of_text)
|
117 |
+
points = [
|
118 |
+
PointStruct(
|
119 |
+
id=idx,
|
120 |
+
vector=data.embedding,
|
121 |
+
payload={"text": text},
|
122 |
+
)
|
123 |
+
for idx, (data, text) in enumerate(zip(embeddings_response.data, list_of_text))
|
124 |
+
]
|
125 |
+
self.qdrant_client.create_collection(
|
126 |
+
collection_name,
|
127 |
+
vectors_config=VectorParams(
|
128 |
+
size=self.embedding_model.dimensions,
|
129 |
+
distance=Distance.COSINE,
|
130 |
+
),
|
131 |
+
)
|
132 |
+
self.qdrant_client.upsert(collection_name, points)
|
133 |
return self
|
134 |
|
135 |
|
app.py
CHANGED
@@ -1,20 +1,27 @@
|
|
1 |
import os
|
|
|
2 |
from typing import List
|
3 |
from chainlit.types import AskFileResponse
|
4 |
-
from
|
|
|
5 |
from aimakerspace.openai_utils.prompts import (
|
6 |
UserRolePrompt,
|
7 |
SystemRolePrompt,
|
8 |
AssistantRolePrompt,
|
9 |
)
|
10 |
from aimakerspace.openai_utils.embedding import EmbeddingModel
|
11 |
-
from aimakerspace.vectordatabase import VectorDatabase
|
12 |
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
|
13 |
import chainlit as cl
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
15 |
system_template = """\
|
16 |
Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
|
17 |
-
system_role_prompt = SystemRolePrompt(system_template)
|
18 |
|
19 |
user_prompt_template = """\
|
20 |
Context:
|
@@ -23,100 +30,130 @@ Context:
|
|
23 |
Question:
|
24 |
{question}
|
25 |
"""
|
26 |
-
user_role_prompt = UserRolePrompt(user_prompt_template)
|
27 |
-
|
28 |
-
class RetrievalAugmentedQAPipeline:
|
29 |
-
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
|
30 |
-
self.llm = llm
|
31 |
-
self.vector_db_retriever = vector_db_retriever
|
32 |
-
|
33 |
-
async def arun_pipeline(self, user_query: str):
|
34 |
-
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
|
35 |
-
|
36 |
-
context_prompt = ""
|
37 |
-
for context in context_list:
|
38 |
-
context_prompt += context[0] + "\n"
|
39 |
-
|
40 |
-
formatted_system_prompt = system_role_prompt.create_message()
|
41 |
-
|
42 |
-
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
|
43 |
-
|
44 |
-
async def generate_response():
|
45 |
-
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
|
46 |
-
yield chunk
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
text_splitter = CharacterTextSplitter()
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
def process_text_file(file: AskFileResponse):
|
54 |
import tempfile
|
55 |
|
56 |
-
with tempfile.NamedTemporaryFile(
|
|
|
|
|
57 |
temp_file_path = temp_file.name
|
58 |
|
59 |
-
with open(
|
60 |
-
f.
|
|
|
|
|
|
|
61 |
|
62 |
text_loader = TextFileLoader(temp_file_path)
|
63 |
documents = text_loader.load_documents()
|
64 |
-
texts =
|
|
|
|
|
65 |
return texts
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
@cl.on_chat_start
|
69 |
async def on_chat_start():
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
files = None
|
71 |
|
72 |
# Wait for the user to upload a file
|
73 |
while files == None:
|
|
|
74 |
files = await cl.AskFileMessage(
|
75 |
-
content="Please upload a
|
76 |
-
accept=["text/plain"],
|
77 |
-
max_size_mb=
|
|
|
78 |
timeout=180,
|
79 |
).send()
|
80 |
-
|
81 |
-
file
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
86 |
await msg.send()
|
87 |
|
88 |
-
# load the file
|
89 |
-
texts = process_text_file(file)
|
90 |
-
|
91 |
print(f"Processing {len(texts)} text chunks")
|
92 |
-
|
93 |
# Create a dict vector store
|
94 |
-
|
|
|
|
|
95 |
vector_db = await vector_db.abuild_from_list(texts)
|
96 |
-
|
97 |
chat_openai = ChatOpenAI()
|
98 |
|
99 |
# Create a chain
|
100 |
-
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
|
101 |
-
vector_db_retriever=vector_db,
|
102 |
-
llm=chat_openai
|
103 |
)
|
104 |
-
|
105 |
# Let the user know that the system is ready
|
106 |
-
msg.content
|
107 |
-
await msg.
|
108 |
|
109 |
cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
|
110 |
|
111 |
|
112 |
@cl.on_message
|
113 |
-
async def main(message):
|
114 |
-
|
|
|
|
|
|
|
115 |
|
116 |
msg = cl.Message(content="")
|
117 |
result = await chain.arun_pipeline(message.content)
|
118 |
|
119 |
-
async for stream_resp in result
|
120 |
await msg.stream_token(stream_resp)
|
121 |
|
122 |
-
await msg.send()
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from openai import AsyncOpenAI
|
3 |
from typing import List
|
4 |
from chainlit.types import AskFileResponse
|
5 |
+
from chainlit.cli import run_chainlit
|
6 |
+
from aimakerspace.text_utils import CharacterTextSplitter, PdfFileLoader, TextFileLoader
|
7 |
from aimakerspace.openai_utils.prompts import (
|
8 |
UserRolePrompt,
|
9 |
SystemRolePrompt,
|
10 |
AssistantRolePrompt,
|
11 |
)
|
12 |
from aimakerspace.openai_utils.embedding import EmbeddingModel
|
13 |
+
from aimakerspace.vectordatabase import VectorDatabase, VectorDatabaseOptions
|
14 |
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
|
15 |
import chainlit as cl
|
16 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
17 |
|
18 |
+
|
19 |
+
# Instrument the OpenAI client
|
20 |
+
# cl.instrument_openai()
|
21 |
+
|
22 |
+
##### Prompt Templates #####
|
23 |
system_template = """\
|
24 |
Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
|
|
|
25 |
|
26 |
user_prompt_template = """\
|
27 |
Context:
|
|
|
30 |
Question:
|
31 |
{question}
|
32 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
system_role_prompt = SystemRolePrompt(system_template)
|
35 |
+
user_role_prompt = UserRolePrompt(user_prompt_template)
|
|
|
36 |
|
37 |
+
### Text Chunking ###
|
38 |
+
|
39 |
+
# text_splitter = CharacterTextSplitter()
|
40 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
41 |
+
separators=[
|
42 |
+
"\n\n",
|
43 |
+
"\n",
|
44 |
+
" ",
|
45 |
+
".",
|
46 |
+
",",
|
47 |
+
"\u200b", # Zero-width space
|
48 |
+
"\uff0c", # Fullwidth comma
|
49 |
+
"\u3001", # Ideographic comma
|
50 |
+
"\uff0e", # Fullwidth full stop
|
51 |
+
"\u3002", # Ideographic full stop
|
52 |
+
"",
|
53 |
+
],
|
54 |
+
)
|
55 |
|
56 |
+
def process_text_file(file: AskFileResponse) -> List[str]:
|
57 |
import tempfile
|
58 |
|
59 |
+
with tempfile.NamedTemporaryFile(
|
60 |
+
mode="w", delete=False, suffix=".txt"
|
61 |
+
) as temp_file:
|
62 |
temp_file_path = temp_file.name
|
63 |
|
64 |
+
with open(file.path, "r", encoding="utf-8") as f:
|
65 |
+
text = f.read()
|
66 |
+
|
67 |
+
with open(temp_file_path, "w") as f:
|
68 |
+
f.write(text)
|
69 |
|
70 |
text_loader = TextFileLoader(temp_file_path)
|
71 |
documents = text_loader.load_documents()
|
72 |
+
texts = []
|
73 |
+
for doc in documents:
|
74 |
+
texts.append(text_splitter.split_text(doc))
|
75 |
return texts
|
76 |
|
77 |
+
def process_pdf_file(file: AskFileResponse) -> List[str]:
|
78 |
+
pdf_loader = PdfFileLoader(file.path)
|
79 |
+
texts = pdf_loader.load_documents() # Also handles splitting the text in this case pages
|
80 |
+
return texts
|
81 |
+
|
82 |
+
async def send_new_message(content, elemets=None):
|
83 |
+
msg = cl.Message(content,elements=elemets)
|
84 |
+
await msg.send()
|
85 |
+
return msg
|
86 |
+
|
87 |
|
88 |
@cl.on_chat_start
|
89 |
async def on_chat_start():
|
90 |
+
print("On Chat Start")
|
91 |
+
# await send_new_message("Welcome to the Chat with Files app!")
|
92 |
+
msg = cl.Message(content="Welcome to the Chat with Files app!")
|
93 |
+
await msg.send()
|
94 |
+
print("After First message")
|
95 |
+
|
96 |
files = None
|
97 |
|
98 |
# Wait for the user to upload a file
|
99 |
while files == None:
|
100 |
+
|
101 |
files = await cl.AskFileMessage(
|
102 |
+
content="Please upload a text file to begin!",
|
103 |
+
accept=["text/plain", "application/pdf"],
|
104 |
+
max_size_mb=10,
|
105 |
+
max_files=4,
|
106 |
timeout=180,
|
107 |
).send()
|
108 |
+
texts : List[str] = []
|
109 |
+
for file in files:
|
110 |
+
if file.type == "application/pdf":
|
111 |
+
texts.extend(process_pdf_file(file))
|
112 |
+
if file.type == "text/plain":
|
113 |
+
texts.extend(process_text_file(file))
|
114 |
+
|
115 |
+
# await send_new_message(content=f"Processing `{file.name}`...")
|
116 |
+
msg = cl.Message(content=f"Processing `{file.name}`...")
|
117 |
await msg.send()
|
118 |
|
|
|
|
|
|
|
119 |
print(f"Processing {len(texts)} text chunks")
|
120 |
+
|
121 |
# Create a dict vector store
|
122 |
+
vector_db_options =VectorDatabaseOptions.QDRANT
|
123 |
+
embedding_model = EmbeddingModel(embeddings_model_name= "text-embedding-3-small",dimensions=1000)
|
124 |
+
vector_db = VectorDatabase(vector_db_options,embedding_model)
|
125 |
vector_db = await vector_db.abuild_from_list(texts)
|
126 |
+
|
127 |
chat_openai = ChatOpenAI()
|
128 |
|
129 |
# Create a chain
|
130 |
+
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(system_role_prompt, user_role_prompt,
|
131 |
+
vector_db_retriever=vector_db, llm=chat_openai
|
|
|
132 |
)
|
133 |
+
|
134 |
# Let the user know that the system is ready
|
135 |
+
msg = cl.Message(content=f"Processing `{file.name}` done. You can now ask questions!")
|
136 |
+
await msg.send()
|
137 |
|
138 |
cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
|
139 |
|
140 |
|
141 |
@cl.on_message
|
142 |
+
async def main(message: cl.Message):
|
143 |
+
msg = cl.Message(content="on message")
|
144 |
+
await msg.send()
|
145 |
+
|
146 |
+
chain :RetrievalAugmentedQAPipeline = cl.user_session.get("chain")
|
147 |
|
148 |
msg = cl.Message(content="")
|
149 |
result = await chain.arun_pipeline(message.content)
|
150 |
|
151 |
+
async for stream_resp in result.get('response'):
|
152 |
await msg.stream_token(stream_resp)
|
153 |
|
154 |
+
await msg.send()
|
155 |
+
cl.user_session.set("chain", chain)
|
156 |
+
|
157 |
+
|
158 |
+
if __name__ == "__main__":
|
159 |
+
run_chainlit(__file__)
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
numpy
|
2 |
-
chainlit==0.7.700
|
3 |
-
openai
|
|
|
4 |
langchain-text-splitters
|
5 |
-
pypdf
|
6 |
langchain-community
|
7 |
-
|
|
|
1 |
+
numpy==1.26.4
|
2 |
+
chainlit==0.7.700 # 1.1.402
|
3 |
+
openai==1.3.5
|
4 |
+
qdrant-client==1.11.0
|
5 |
langchain-text-splitters
|
|
|
6 |
langchain-community
|
7 |
+
pypdf
|