from enum import Enum import numpy as np from collections import defaultdict from typing import List, Tuple, Callable from aimakerspace.openai_utils.embedding import EmbeddingModel import asyncio from qdrant_client import models, QdrantClient from qdrant_client.models import PointStruct,VectorParams,Distance collection_name = "embedding_collection" def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float: """Computes the cosine similarity between two vectors.""" dot_product = np.dot(vector_a, vector_b) norm_a = np.linalg.norm(vector_a) norm_b = np.linalg.norm(vector_b) return dot_product / (norm_a * norm_b) def euclidean_distance(vector_a: np.array, vector_b: np.array) -> float: """Computes the Euclidean distance between two vectors.""" return np.sqrt(np.sum((vector_a - vector_b) ** 2)) def manhattan_distance(vector_a: np.array, vector_b: np.array) -> float: """Computes the Manhattan distance between two vectors.""" return np.sum(np.abs(vector_a - vector_b)) def minkowski_distance(vector_a: np.array, vector_b: np.array, p: float) -> float: """ Computes the Minkowski distance between two vectors. Parameters: vector_a (np.array): First vector. vector_b (np.array): Second vector. p (float): The order of the norm. For example, p=1 gives Manhattan distance, p=2 gives Euclidean distance. Returns: float: Minkowski distance between vector_a and vector_b. """ # Ensure the input vectors are NumPy arrays vector_a = np.asarray(vector_a) vector_b = np.asarray(vector_b) # Compute Minkowski distance distance = np.sum(np.abs(vector_a - vector_b) ** p) ** (1 / p) return distance class DistanceMeasure(Enum): COSINE_SIMILARITY = cosine_similarity EUCLIDEAN_DISTANCE = euclidean_distance MANHATTAN_DISTANCE = manhattan_distance MINKOWSKI_DISTANCE = minkowski_distance class VectorDatabaseOptions(Enum): DICTIONARY = "dictionary" QDRANT = "qdrant" class VectorDatabase: def __init__( self, vector_db_options: VectorDatabaseOptions, embedding_model: EmbeddingModel = None, ): self.vectors = None self.vector_db_options = vector_db_options self.embedding_model = embedding_model or EmbeddingModel() if vector_db_options == VectorDatabaseOptions.DICTIONARY: self.vectors = defaultdict(np.array) if vector_db_options == VectorDatabaseOptions.QDRANT: self.qdrant_client = QdrantClient(":memory:") def insert(self, key: str, vector: np.array) -> None: self.vectors[key] = vector def search( self, query_vector: np.array, k: int, distance_measure: Callable = cosine_similarity, ) -> List[Tuple[str, float]]: scores = [ (key, distance_measure(query_vector, vector)) for key, vector in self.vectors.items() ] return sorted(scores, key=lambda x: x[1], reverse=True)[:k] def search_by_text( self, query_text: str, k: int, distance_measure: Callable = cosine_similarity, return_as_text: bool = False, ) -> List[Tuple[str, float]]: query_vector = self.embedding_model.get_embedding(query_text) if self.vector_db_options == VectorDatabaseOptions.DICTIONARY: results = self.search(query_vector, k, distance_measure) return [result[0] for result in results] if return_as_text else results if self.vector_db_options == VectorDatabaseOptions.QDRANT: search_result = self.qdrant_client.search(collection_name,query_vector=query_vector) return [(point.payload["text"],point.score) for point in search_result] def retrieve_from_key(self, key: str) -> np.array: return self.vectors.get(key, None) async def abuild_from_list(self, list_of_text: List[str]) -> "VectorDatabase": if self.vector_db_options == VectorDatabaseOptions.DICTIONARY: embeddings = await self.embedding_model.async_get_embeddings(list_of_text) for text, embedding in zip(list_of_text, embeddings): self.insert(text, np.array(embedding)) if self.vector_db_options == VectorDatabaseOptions.QDRANT: embeddings_response = await self.embedding_model.async_get_embeddings_openai(list_of_text) points = [ PointStruct( id=idx, vector=data.embedding, payload={"text": text}, ) for idx, (data, text) in enumerate(zip(embeddings_response.data, list_of_text)) ] self.qdrant_client.create_collection( collection_name, vectors_config=VectorParams( size=self.embedding_model.dimensions, distance=Distance.COSINE, ), ) self.qdrant_client.upsert(collection_name, points) return self if __name__ == "__main__": list_of_text = [ "I like to eat broccoli and bananas.", "I ate a banana and spinach smoothie for breakfast.", "Chinchillas and kittens are cute.", "My sister adopted a kitten yesterday.", "Look at this cute hamster munching on a piece of broccoli.", ] vector_db = VectorDatabase() vector_db = asyncio.run(vector_db.abuild_from_list(list_of_text)) k = 2 searched_vector = vector_db.search_by_text("I think fruit is awesome!", k=k) print(f"Closest {k} vector(s):", searched_vector) retrieved_vector = vector_db.retrieve_from_key( "I like to eat broccoli and bananas." ) print("Retrieved vector:", retrieved_vector) relevant_texts = vector_db.search_by_text( "I think fruit is awesome!", k=k, return_as_text=True ) print(f"Closest {k} text(s):", relevant_texts)