# aimakerspace.text_utils.py import os from typing import List from langchain_community.document_loaders import PyPDFLoader class TextFileLoader: def __init__(self, path: str, encoding: str = "utf-8"): self.documents = [] self.path = path self.encoding = encoding def load(self): if os.path.isdir(self.path): self.load_directory() elif os.path.isfile(self.path) and self.path.endswith(".txt"): self.load_file() else: raise ValueError( "Provided path is neither a valid directory nor a .txt file." ) def load_file(self): with open(self.path, "r", encoding=self.encoding) as f: self.documents.append(f.read()) def load_directory(self): for root, _, files in os.walk(self.path): for file in files: if file.endswith(".txt"): with open( os.path.join(root, file), "r", encoding=self.encoding ) as f: self.documents.append(f.read()) def load_documents(self): self.load() return self.documents class PdfFileLoader: def __init__(self, path: str): self.documents = [] self.path = path def load(self): if os.path.isdir(self.path): self.load_directory() elif self.path.endswith(".pdf"): self.load_file() else: raise ValueError( "Provided path is neither a valid directory nor a .pdf file." ) def load_file(self): pdf_loader = PyPDFLoader(self.path) pdf_pages = pdf_loader.load_and_split() # Defaults to RecursiveCharacterTextSplitter. self.documents = [page.page_content for page in pdf_pages] def load_directory(self): for root, _, files in os.walk(self.path): for file in files: if file.endswith(".pdf"): pdf_loader = PyPDFLoader(file.path) pdf_pages = pdf_loader.load_and_split() self.documents.append([page.page_content for page in pdf_pages]) def load_documents(self): self.load() return self.documents class CharacterTextSplitter(): def __init__( self, chunk_size: int = 1000, chunk_overlap: int = 200, ): assert ( chunk_size > chunk_overlap ), "Chunk size must be greater than chunk overlap" self.chunk_size = chunk_size self.chunk_overlap = chunk_overlap def split(self, text: str) -> List[str]: chunks = [] for i in range(0, len(text), self.chunk_size - self.chunk_overlap): chunks.append(text[i : i + self.chunk_size]) return chunks def split_texts(self, texts: List[str]) -> List[str]: chunks = [] for text in texts: chunks.extend(self.split(text)) return chunks