Spaces:
Sleeping
Sleeping
jeevan
commited on
Commit
·
ef80283
1
Parent(s):
f4ae443
locally working
Browse files- .chainlit/config.toml +84 -0
- app.py +25 -51
- chainlit.md +14 -0
.chainlit/config.toml
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
# Whether to enable telemetry (default: true). No personal data is collected.
|
3 |
+
enable_telemetry = true
|
4 |
+
|
5 |
+
# List of environment variables to be provided by each user to use the app.
|
6 |
+
user_env = []
|
7 |
+
|
8 |
+
# Duration (in seconds) during which the session is saved when the connection is lost
|
9 |
+
session_timeout = 3600
|
10 |
+
|
11 |
+
# Enable third parties caching (e.g LangChain cache)
|
12 |
+
cache = false
|
13 |
+
|
14 |
+
# Follow symlink for asset mount (see https://github.com/Chainlit/chainlit/issues/317)
|
15 |
+
# follow_symlink = false
|
16 |
+
|
17 |
+
[features]
|
18 |
+
# Show the prompt playground
|
19 |
+
prompt_playground = true
|
20 |
+
|
21 |
+
# Process and display HTML in messages. This can be a security risk (see https://stackoverflow.com/questions/19603097/why-is-it-dangerous-to-render-user-generated-html-or-javascript)
|
22 |
+
unsafe_allow_html = false
|
23 |
+
|
24 |
+
# Process and display mathematical expressions. This can clash with "$" characters in messages.
|
25 |
+
latex = false
|
26 |
+
|
27 |
+
# Authorize users to upload files with messages
|
28 |
+
multi_modal = true
|
29 |
+
|
30 |
+
# Allows user to use speech to text
|
31 |
+
[features.speech_to_text]
|
32 |
+
enabled = false
|
33 |
+
# See all languages here https://github.com/JamesBrill/react-speech-recognition/blob/HEAD/docs/API.md#language-string
|
34 |
+
# language = "en-US"
|
35 |
+
|
36 |
+
[UI]
|
37 |
+
# Name of the app and chatbot.
|
38 |
+
name = "Chatbot"
|
39 |
+
|
40 |
+
# Show the readme while the conversation is empty.
|
41 |
+
show_readme_as_default = true
|
42 |
+
|
43 |
+
# Description of the app and chatbot. This is used for HTML tags.
|
44 |
+
# description = ""
|
45 |
+
|
46 |
+
# Large size content are by default collapsed for a cleaner ui
|
47 |
+
default_collapse_content = true
|
48 |
+
|
49 |
+
# The default value for the expand messages settings.
|
50 |
+
default_expand_messages = false
|
51 |
+
|
52 |
+
# Hide the chain of thought details from the user in the UI.
|
53 |
+
hide_cot = false
|
54 |
+
|
55 |
+
# Link to your github repo. This will add a github button in the UI's header.
|
56 |
+
# github = ""
|
57 |
+
|
58 |
+
# Specify a CSS file that can be used to customize the user interface.
|
59 |
+
# The CSS file can be served from the public directory or via an external link.
|
60 |
+
# custom_css = "/public/test.css"
|
61 |
+
|
62 |
+
# Override default MUI light theme. (Check theme.ts)
|
63 |
+
[UI.theme.light]
|
64 |
+
#background = "#FAFAFA"
|
65 |
+
#paper = "#FFFFFF"
|
66 |
+
|
67 |
+
[UI.theme.light.primary]
|
68 |
+
#main = "#F80061"
|
69 |
+
#dark = "#980039"
|
70 |
+
#light = "#FFE7EB"
|
71 |
+
|
72 |
+
# Override default MUI dark theme. (Check theme.ts)
|
73 |
+
[UI.theme.dark]
|
74 |
+
#background = "#FAFAFA"
|
75 |
+
#paper = "#FFFFFF"
|
76 |
+
|
77 |
+
[UI.theme.dark.primary]
|
78 |
+
#main = "#F80061"
|
79 |
+
#dark = "#980039"
|
80 |
+
#light = "#FFE7EB"
|
81 |
+
|
82 |
+
|
83 |
+
[meta]
|
84 |
+
generated_by = "0.7.700"
|
app.py
CHANGED
@@ -1,7 +1,3 @@
|
|
1 |
-
### Import Section ###
|
2 |
-
"""
|
3 |
-
IMPORTS HERE
|
4 |
-
"""
|
5 |
import os
|
6 |
import uuid
|
7 |
from dotenv import load_dotenv
|
@@ -9,32 +5,22 @@ from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
9 |
from langchain_community.document_loaders import PyMuPDFLoader
|
10 |
from qdrant_client import QdrantClient
|
11 |
from qdrant_client.http.models import Distance, VectorParams
|
12 |
-
from langchain_openai.embeddings import OpenAIEmbeddings
|
13 |
from langchain.storage import LocalFileStore
|
14 |
from langchain_qdrant import QdrantVectorStore
|
15 |
from langchain.embeddings import CacheBackedEmbeddings
|
16 |
-
from langchain_core.prompts import ChatPromptTemplate
|
17 |
from chainlit.types import AskFileResponse
|
18 |
-
from langchain_core.globals import set_llm_cache
|
19 |
-
from langchain_openai import ChatOpenAI
|
20 |
-
from langchain_core.caches import InMemoryCache
|
21 |
from operator import itemgetter
|
22 |
from langchain_core.runnables.passthrough import RunnablePassthrough
|
23 |
import chainlit as cl
|
24 |
from langchain_core.runnables.config import RunnableConfig
|
25 |
-
from
|
26 |
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
|
27 |
from langchain_core.prompts import PromptTemplate
|
28 |
|
29 |
-
import numpy as np
|
30 |
-
from numpy.linalg import norm
|
31 |
-
|
32 |
load_dotenv()
|
33 |
|
34 |
-
|
35 |
-
""
|
36 |
-
GLOBAL CODE HERE
|
37 |
-
"""
|
38 |
|
39 |
RAG_PROMPT_TEMPLATE = """\
|
40 |
<|start_header_id|>system<|end_header_id|>
|
@@ -49,10 +35,11 @@ Context:
|
|
49 |
|
50 |
<|start_header_id|>assistant<|end_header_id|>
|
51 |
"""
|
52 |
-
|
|
|
53 |
hf_llm = HuggingFaceEndpoint(
|
54 |
-
endpoint_url=
|
55 |
-
max_new_tokens=
|
56 |
top_k=10,
|
57 |
top_p=0.95,
|
58 |
typical_p=0.95,
|
@@ -67,12 +54,6 @@ hf_embeddings = HuggingFaceEndpointEmbeddings(
|
|
67 |
)
|
68 |
|
69 |
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
70 |
-
rag_chain = rag_prompt | hf_llm
|
71 |
-
|
72 |
-
def cosine_similarity(phrase_1, phrase_2):
|
73 |
-
vec_1 = hf_embeddings.embed_documents([phrase_1])[0]
|
74 |
-
vec2_2 = hf_embeddings.embed_documents([phrase_2])[0]
|
75 |
-
return np.dot(vec_1, vec2_2) / (norm(vec_1) * norm(vec2_2))
|
76 |
|
77 |
def process_file(file: AskFileResponse):
|
78 |
import tempfile
|
@@ -91,15 +72,11 @@ def process_file(file: AskFileResponse):
|
|
91 |
return docs
|
92 |
|
93 |
|
94 |
-
### On Chat Start (Session Start) Section ###
|
95 |
@cl.on_chat_start
|
96 |
async def on_chat_start():
|
97 |
-
""" SESSION SPECIFIC CODE HERE """
|
98 |
files = None
|
99 |
|
100 |
while files == None:
|
101 |
-
# Async method: This allows the function to pause execution while waiting for the user to upload a file,
|
102 |
-
# without blocking the entire application. It improves responsiveness and scalability.
|
103 |
files = await cl.AskFileMessage(
|
104 |
content="Please upload a PDF file to begin!",
|
105 |
accept=["application/pdf"],
|
@@ -115,38 +92,36 @@ async def on_chat_start():
|
|
115 |
await msg.send()
|
116 |
docs = process_file(file)
|
117 |
|
118 |
-
#
|
119 |
collection_name = f"pdf_to_parse_{uuid.uuid4()}"
|
120 |
client = QdrantClient(":memory:")
|
121 |
client.create_collection(
|
122 |
collection_name=collection_name,
|
123 |
-
vectors_config=VectorParams(size=
|
124 |
)
|
125 |
|
126 |
# Adding cache!
|
127 |
-
store = LocalFileStore("./cache/")
|
128 |
-
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
|
129 |
-
|
130 |
-
)
|
131 |
|
132 |
# Typical QDrant Vector Store Set-up
|
133 |
vectorstore = QdrantVectorStore(
|
134 |
client=client,
|
135 |
collection_name=collection_name,
|
136 |
-
embedding=
|
|
|
137 |
|
138 |
for i in range(0, len(docs), 32):
|
139 |
if i == 0:
|
140 |
-
|
141 |
continue
|
142 |
-
|
143 |
|
144 |
-
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})
|
145 |
|
146 |
retrieval_augmented_qa_chain = (
|
147 |
-
|
148 |
-
| RunnablePassthrough.assign(context=itemgetter("context"))
|
149 |
-
| rag_prompt | hf_llm
|
150 |
)
|
151 |
|
152 |
# Let the user know that the system is ready
|
@@ -166,19 +141,18 @@ def rename(orig_author: str):
|
|
166 |
### On Message Section ###
|
167 |
@cl.on_message
|
168 |
async def main(message: cl.Message):
|
169 |
-
"""
|
170 |
-
MESSAGE CODE HERE
|
171 |
-
"""
|
172 |
runnable = cl.user_session.get("chain")
|
173 |
|
174 |
msg = cl.Message(content="")
|
175 |
|
176 |
-
# Async method: Using astream allows for asynchronous streaming of the response,
|
177 |
-
# improving responsiveness and user experience by showing partial results as they become available.
|
178 |
async for chunk in runnable.astream(
|
179 |
-
{"
|
180 |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
181 |
):
|
182 |
-
await msg.stream_token(chunk
|
|
|
|
|
183 |
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import uuid
|
3 |
from dotenv import load_dotenv
|
|
|
5 |
from langchain_community.document_loaders import PyMuPDFLoader
|
6 |
from qdrant_client import QdrantClient
|
7 |
from qdrant_client.http.models import Distance, VectorParams
|
|
|
8 |
from langchain.storage import LocalFileStore
|
9 |
from langchain_qdrant import QdrantVectorStore
|
10 |
from langchain.embeddings import CacheBackedEmbeddings
|
|
|
11 |
from chainlit.types import AskFileResponse
|
|
|
|
|
|
|
12 |
from operator import itemgetter
|
13 |
from langchain_core.runnables.passthrough import RunnablePassthrough
|
14 |
import chainlit as cl
|
15 |
from langchain_core.runnables.config import RunnableConfig
|
16 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
17 |
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
|
18 |
from langchain_core.prompts import PromptTemplate
|
19 |
|
|
|
|
|
|
|
20 |
load_dotenv()
|
21 |
|
22 |
+
YOUR_LLM_ENDPOINT_URL = os.environ["YOUR_LLM_ENDPOINT_URL"]
|
23 |
+
YOUR_EMBED_MODEL_URL = os.environ["YOUR_EMBED_MODEL_URL"]
|
|
|
|
|
24 |
|
25 |
RAG_PROMPT_TEMPLATE = """\
|
26 |
<|start_header_id|>system<|end_header_id|>
|
|
|
35 |
|
36 |
<|start_header_id|>assistant<|end_header_id|>
|
37 |
"""
|
38 |
+
|
39 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=600, chunk_overlap=100)
|
40 |
hf_llm = HuggingFaceEndpoint(
|
41 |
+
endpoint_url=f"{YOUR_LLM_ENDPOINT_URL}",
|
42 |
+
max_new_tokens=300,
|
43 |
top_k=10,
|
44 |
top_p=0.95,
|
45 |
typical_p=0.95,
|
|
|
54 |
)
|
55 |
|
56 |
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
def process_file(file: AskFileResponse):
|
59 |
import tempfile
|
|
|
72 |
return docs
|
73 |
|
74 |
|
|
|
75 |
@cl.on_chat_start
|
76 |
async def on_chat_start():
|
|
|
77 |
files = None
|
78 |
|
79 |
while files == None:
|
|
|
|
|
80 |
files = await cl.AskFileMessage(
|
81 |
content="Please upload a PDF file to begin!",
|
82 |
accept=["application/pdf"],
|
|
|
92 |
await msg.send()
|
93 |
docs = process_file(file)
|
94 |
|
95 |
+
# QDrant Client Set-up
|
96 |
collection_name = f"pdf_to_parse_{uuid.uuid4()}"
|
97 |
client = QdrantClient(":memory:")
|
98 |
client.create_collection(
|
99 |
collection_name=collection_name,
|
100 |
+
vectors_config=VectorParams(size=768, distance=Distance.COSINE),
|
101 |
)
|
102 |
|
103 |
# Adding cache!
|
104 |
+
# store = LocalFileStore("./cache/")
|
105 |
+
# cached_embedder = CacheBackedEmbeddings.from_bytes_store(
|
106 |
+
# hf_embeddings, store, namespace=hf_embeddings.model
|
107 |
+
# )
|
108 |
|
109 |
# Typical QDrant Vector Store Set-up
|
110 |
vectorstore = QdrantVectorStore(
|
111 |
client=client,
|
112 |
collection_name=collection_name,
|
113 |
+
embedding=hf_embeddings)
|
114 |
+
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})
|
115 |
|
116 |
for i in range(0, len(docs), 32):
|
117 |
if i == 0:
|
118 |
+
retriever.add_documents(docs[i:i+32])
|
119 |
continue
|
120 |
+
retriever.add_documents(docs[i:i+32])
|
121 |
|
|
|
122 |
|
123 |
retrieval_augmented_qa_chain = (
|
124 |
+
{"context": itemgetter("query") | retriever, "query": itemgetter("query")}| rag_prompt | hf_llm
|
|
|
|
|
125 |
)
|
126 |
|
127 |
# Let the user know that the system is ready
|
|
|
141 |
### On Message Section ###
|
142 |
@cl.on_message
|
143 |
async def main(message: cl.Message):
|
|
|
|
|
|
|
144 |
runnable = cl.user_session.get("chain")
|
145 |
|
146 |
msg = cl.Message(content="")
|
147 |
|
|
|
|
|
148 |
async for chunk in runnable.astream(
|
149 |
+
{"query": message.content},
|
150 |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
151 |
):
|
152 |
+
await msg.stream_token(chunk)
|
153 |
+
|
154 |
+
await msg.send()
|
155 |
|
156 |
+
if __name__ == "__main__":
|
157 |
+
from chainlit.cli import run_chainlit
|
158 |
+
run_chainlit(__file__)
|
chainlit.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Welcome to Chainlit! 🚀🤖
|
2 |
+
|
3 |
+
Hi there, Developer! 👋 We're excited to have you on board. Chainlit is a powerful tool designed to help you prototype, debug and share applications built on top of LLMs.
|
4 |
+
|
5 |
+
## Useful Links 🔗
|
6 |
+
|
7 |
+
- **Documentation:** Get started with our comprehensive [Chainlit Documentation](https://docs.chainlit.io) 📚
|
8 |
+
- **Discord Community:** Join our friendly [Chainlit Discord](https://discord.gg/k73SQ3FyUh) to ask questions, share your projects, and connect with other developers! 💬
|
9 |
+
|
10 |
+
We can't wait to see what you create with Chainlit! Happy coding! 💻😊
|
11 |
+
|
12 |
+
## Welcome screen
|
13 |
+
|
14 |
+
To modify the welcome screen, edit the `chainlit.md` file at the root of your project. If you do not want a welcome screen, just leave this file empty.
|