jeffeux's picture
1
8e44aac
raw
history blame
2.21 kB
# ------------------- LIBRARIES -------------------- #
import os, logging, torch, streamlit as st
from transformers import (
AutoTokenizer, AutoModelForCausalLM)
st.balloons()
# --------------------- HELPER --------------------- #
def C(text, color="yellow"):
color_dict: dict = dict(
red="\033[01;31m",
green="\033[01;32m",
yellow="\033[01;33m",
blue="\033[01;34m",
magenta="\033[01;35m",
cyan="\033[01;36m",
)
color_dict[None] = "\033[0m"
return (
f"{color_dict.get(color, None)}"
f"{text}{color_dict[None]}")
st.balloons()
# ------------------ ENVIORNMENT ------------------- #
os.environ["HF_ENDPOINT"] = "https://huggingface.co"
device = ("cuda"
if torch.cuda.is_available() else "cpu")
logging.info(C("[INFO] "f"device = {device}"))
st.balloons()
# ------------------ INITITALIZE ------------------- #
@st.cache
def model_init():
tokenizer = AutoTokenizer.from_pretrained(
"ckip-joint/bloom-1b1-zh")
model = AutoModelForCausalLM.from_pretrained(
"ckip-joint/bloom-1b1-zh",
# Ref.: Eric, Thanks!
# torch_dtype="auto",
# device_map="auto",
# Ref. for `half`: Chan-Jan, Thanks!
).eval().to(device)
st.balloons()
logging.info(C("[INFO] "f"Model init success!"))
return tokenizer, model
# tokenizer, model = model_init()
# st.balloons()
# try:
# # ===================== INPUT ====================== #
# # prompt = "\u554F\uFF1A\u53F0\u7063\u6700\u9AD8\u7684\u5EFA\u7BC9\u7269\u662F\uFF1F\u7B54\uFF1A" #@param {type:"string"}
# prompt = st.text_input("Prompt: ")
# st.balloons()
# # =================== INFERENCE ==================== #
# if prompt:
# st.balloons()
# with torch.no_grad():
# [texts_out] = model.generate(
# **tokenizer(
# prompt, return_tensors="pt"
# ).to(device))
# st.balloons()
# output_text = tokenizer.decode(texts_out)
# st.balloons()
# st.markdown(output_text)
# st.balloons()
# except Exception as err:
# st.write(str(err))
# st.snow()
st.snow()