Spaces:
Runtime error
Runtime error
from __future__ import absolute_import, unicode_literals | |
import os | |
import re | |
import sys | |
import jieba | |
import pickle | |
from .._compat import * | |
from .viterbi import viterbi | |
PROB_START_P = "prob_start.p" | |
PROB_TRANS_P = "prob_trans.p" | |
PROB_EMIT_P = "prob_emit.p" | |
CHAR_STATE_TAB_P = "char_state_tab.p" | |
re_han_detail = re.compile("([\u4E00-\u9FD5]+)") | |
re_skip_detail = re.compile("([\.0-9]+|[a-zA-Z0-9]+)") | |
re_han_internal = re.compile("([\u4E00-\u9FD5a-zA-Z0-9+#&\._]+)") | |
re_skip_internal = re.compile("(\r\n|\s)") | |
re_eng = re.compile("[a-zA-Z0-9]+") | |
re_num = re.compile("[\.0-9]+") | |
re_eng1 = re.compile('^[a-zA-Z0-9]$', re.U) | |
def load_model(): | |
# For Jython | |
start_p = pickle.load(get_module_res("posseg", PROB_START_P)) | |
trans_p = pickle.load(get_module_res("posseg", PROB_TRANS_P)) | |
emit_p = pickle.load(get_module_res("posseg", PROB_EMIT_P)) | |
state = pickle.load(get_module_res("posseg", CHAR_STATE_TAB_P)) | |
return state, start_p, trans_p, emit_p | |
if sys.platform.startswith("java"): | |
char_state_tab_P, start_P, trans_P, emit_P = load_model() | |
else: | |
from .char_state_tab import P as char_state_tab_P | |
from .prob_start import P as start_P | |
from .prob_trans import P as trans_P | |
from .prob_emit import P as emit_P | |
class pair(object): | |
def __init__(self, word, flag): | |
self.word = word | |
self.flag = flag | |
def __unicode__(self): | |
return '%s/%s' % (self.word, self.flag) | |
def __repr__(self): | |
return 'pair(%r, %r)' % (self.word, self.flag) | |
def __str__(self): | |
if PY2: | |
return self.__unicode__().encode(default_encoding) | |
else: | |
return self.__unicode__() | |
def __iter__(self): | |
return iter((self.word, self.flag)) | |
def __lt__(self, other): | |
return self.word < other.word | |
def __eq__(self, other): | |
return isinstance(other, pair) and self.word == other.word and self.flag == other.flag | |
def __hash__(self): | |
return hash(self.word) | |
def encode(self, arg): | |
return self.__unicode__().encode(arg) | |
class POSTokenizer(object): | |
def __init__(self, tokenizer=None): | |
self.tokenizer = tokenizer or jieba.Tokenizer() | |
self.load_word_tag(self.tokenizer.get_dict_file()) | |
def __repr__(self): | |
return '<POSTokenizer tokenizer=%r>' % self.tokenizer | |
def __getattr__(self, name): | |
if name in ('cut_for_search', 'lcut_for_search', 'tokenize'): | |
# may be possible? | |
raise NotImplementedError | |
return getattr(self.tokenizer, name) | |
def initialize(self, dictionary=None): | |
self.tokenizer.initialize(dictionary) | |
self.load_word_tag(self.tokenizer.get_dict_file()) | |
def load_word_tag(self, f): | |
self.word_tag_tab = {} | |
f_name = resolve_filename(f) | |
for lineno, line in enumerate(f, 1): | |
try: | |
line = line.strip().decode("utf-8") | |
if not line: | |
continue | |
word, _, tag = line.split(" ") | |
self.word_tag_tab[word] = tag | |
except Exception: | |
raise ValueError( | |
'invalid POS dictionary entry in %s at Line %s: %s' % (f_name, lineno, line)) | |
f.close() | |
def makesure_userdict_loaded(self): | |
if self.tokenizer.user_word_tag_tab: | |
self.word_tag_tab.update(self.tokenizer.user_word_tag_tab) | |
self.tokenizer.user_word_tag_tab = {} | |
def __cut(self, sentence): | |
prob, pos_list = viterbi( | |
sentence, char_state_tab_P, start_P, trans_P, emit_P) | |
begin, nexti = 0, 0 | |
for i, char in enumerate(sentence): | |
pos = pos_list[i][0] | |
if pos == 'B': | |
begin = i | |
elif pos == 'E': | |
yield pair(sentence[begin:i + 1], pos_list[i][1]) | |
nexti = i + 1 | |
elif pos == 'S': | |
yield pair(char, pos_list[i][1]) | |
nexti = i + 1 | |
if nexti < len(sentence): | |
yield pair(sentence[nexti:], pos_list[nexti][1]) | |
def __cut_detail(self, sentence): | |
blocks = re_han_detail.split(sentence) | |
for blk in blocks: | |
if re_han_detail.match(blk): | |
for word in self.__cut(blk): | |
yield word | |
else: | |
tmp = re_skip_detail.split(blk) | |
for x in tmp: | |
if x: | |
if re_num.match(x): | |
yield pair(x, 'm') | |
elif re_eng.match(x): | |
yield pair(x, 'eng') | |
else: | |
yield pair(x, 'x') | |
def __cut_DAG_NO_HMM(self, sentence): | |
DAG = self.tokenizer.get_DAG(sentence) | |
route = {} | |
self.tokenizer.calc(sentence, DAG, route) | |
x = 0 | |
N = len(sentence) | |
buf = '' | |
while x < N: | |
y = route[x][1] + 1 | |
l_word = sentence[x:y] | |
if re_eng1.match(l_word): | |
buf += l_word | |
x = y | |
else: | |
if buf: | |
yield pair(buf, 'eng') | |
buf = '' | |
yield pair(l_word, self.word_tag_tab.get(l_word, 'x')) | |
x = y | |
if buf: | |
yield pair(buf, 'eng') | |
buf = '' | |
def __cut_DAG(self, sentence): | |
DAG = self.tokenizer.get_DAG(sentence) | |
route = {} | |
self.tokenizer.calc(sentence, DAG, route) | |
x = 0 | |
buf = '' | |
N = len(sentence) | |
while x < N: | |
y = route[x][1] + 1 | |
l_word = sentence[x:y] | |
if y - x == 1: | |
buf += l_word | |
else: | |
if buf: | |
if len(buf) == 1: | |
yield pair(buf, self.word_tag_tab.get(buf, 'x')) | |
elif not self.tokenizer.FREQ.get(buf): | |
recognized = self.__cut_detail(buf) | |
for t in recognized: | |
yield t | |
else: | |
for elem in buf: | |
yield pair(elem, self.word_tag_tab.get(elem, 'x')) | |
buf = '' | |
yield pair(l_word, self.word_tag_tab.get(l_word, 'x')) | |
x = y | |
if buf: | |
if len(buf) == 1: | |
yield pair(buf, self.word_tag_tab.get(buf, 'x')) | |
elif not self.tokenizer.FREQ.get(buf): | |
recognized = self.__cut_detail(buf) | |
for t in recognized: | |
yield t | |
else: | |
for elem in buf: | |
yield pair(elem, self.word_tag_tab.get(elem, 'x')) | |
def __cut_internal(self, sentence, HMM=True): | |
self.makesure_userdict_loaded() | |
sentence = strdecode(sentence) | |
blocks = re_han_internal.split(sentence) | |
if HMM: | |
cut_blk = self.__cut_DAG | |
else: | |
cut_blk = self.__cut_DAG_NO_HMM | |
for blk in blocks: | |
if re_han_internal.match(blk): | |
for word in cut_blk(blk): | |
yield word | |
else: | |
tmp = re_skip_internal.split(blk) | |
for x in tmp: | |
if re_skip_internal.match(x): | |
yield pair(x, 'x') | |
else: | |
for xx in x: | |
if re_num.match(xx): | |
yield pair(xx, 'm') | |
elif re_eng.match(x): | |
yield pair(xx, 'eng') | |
else: | |
yield pair(xx, 'x') | |
def _lcut_internal(self, sentence): | |
return list(self.__cut_internal(sentence)) | |
def _lcut_internal_no_hmm(self, sentence): | |
return list(self.__cut_internal(sentence, False)) | |
def cut(self, sentence, HMM=True): | |
for w in self.__cut_internal(sentence, HMM=HMM): | |
yield w | |
def lcut(self, *args, **kwargs): | |
return list(self.cut(*args, **kwargs)) | |
# default Tokenizer instance | |
dt = POSTokenizer(jieba.dt) | |
# global functions | |
initialize = dt.initialize | |
def _lcut_internal(s): | |
return dt._lcut_internal(s) | |
def _lcut_internal_no_hmm(s): | |
return dt._lcut_internal_no_hmm(s) | |
def cut(sentence, HMM=True): | |
""" | |
Global `cut` function that supports parallel processing. | |
Note that this only works using dt, custom POSTokenizer | |
instances are not supported. | |
""" | |
global dt | |
if jieba.pool is None: | |
for w in dt.cut(sentence, HMM=HMM): | |
yield w | |
else: | |
parts = strdecode(sentence).splitlines(True) | |
if HMM: | |
result = jieba.pool.map(_lcut_internal, parts) | |
else: | |
result = jieba.pool.map(_lcut_internal_no_hmm, parts) | |
for r in result: | |
for w in r: | |
yield w | |
def lcut(sentence, HMM=True): | |
return list(cut(sentence, HMM)) | |