Spaces:
Runtime error
Runtime error
from jisho_api.word import Word | |
from jisho_api.sentence import Sentence | |
import pandas as pd | |
import re | |
import requests | |
import spacy | |
from spacy_streamlit import visualize_ner, visualize_tokens | |
#from spacy.language import Language | |
from spacy.tokens import Doc | |
import spacy_ke | |
import streamlit as st | |
# Global variables | |
DEFAULT_TEXT = """それまで、ぼくはずっとひとりぼっちだった。だれともうちとけられないまま、6年まえ、ちょっとおかしくなって、サハラさばくに下りた。ぼくのエンジンのなかで、なにかがこわれていた。ぼくには、みてくれるひとも、おきゃくさんもいなかったから、なおすのはむずかしいけど、ぜんぶひとりでなんとかやってみることにした。それでぼくのいのちがきまってしまう。のみ水は、たった7日ぶんしかなかった。 | |
1日めの夜、ぼくはすなの上でねむった。ひとのすむところは、はるかかなただった。海のどまんなか、いかだでさまよっているひとよりも、もっとひとりぼっち。だから、ぼくがびっくりしたのも、みんなわかってくれるとおもう。じつは、あさ日がのぼるころ、ぼくは、ふしぎなかわいいこえでおこされたんだ。 | |
「ごめんください……ヒツジの絵をかいて!」 | |
「えっ?」 | |
「ぼくにヒツジの絵をかいて……」 | |
『星の王子さま』""" | |
DESCRIPTION = "AI模型輔助語言學習:日語" | |
TOK_SEP = " | " | |
MODEL_NAME = "ja_ginza" | |
# External API callers | |
def parse_jisho_senses(word): | |
res = Word.request(word) | |
response = res.dict() | |
if response["meta"]["status"] == 200: | |
data = response["data"] | |
commons = [d for d in data if d["is_common"]] | |
if commons: | |
common = commons[0] # Only get the first entry that is common | |
senses = common["senses"] | |
if len(senses) > 3: | |
senses = senses[:3] | |
with st.container(): | |
for idx, sense in enumerate(senses): | |
eng_def = "; ".join(sense["english_definitions"]) | |
pos = "/".join(sense["parts_of_speech"]) | |
st.write(f"Sense {idx+1}: {eng_def} ({pos})") | |
else: | |
st.info("Found no common words on Jisho!") | |
else: | |
st.error("Can't get response from Jisho!") | |
def parse_jisho_sentences(word): | |
res = Sentence.request(word) | |
try: | |
response = res.dict() | |
data = response["data"] | |
if len(data) > 3: | |
sents = data[:3] | |
else: | |
sents = data | |
with st.container(): | |
for idx, sent in enumerate(sents): | |
eng = sent["en_translation"] | |
jap = sent["japanese"] | |
st.write(f"Sentence {idx+1}: {jap}") | |
st.write(f"({eng})") | |
except: | |
st.info("Found no results on Jisho!") | |
# Utility functions | |
def create_jap_df(tokens): | |
seen_texts = [] | |
filtered_tokens = [] | |
for tok in tokens: | |
if tok.text not in seen_texts: | |
filtered_tokens.append(tok) | |
df = pd.DataFrame( | |
{ | |
"單詞": [tok.text for tok in filtered_tokens], | |
"發音": ["/".join(tok.morph.get("Reading")) for tok in filtered_tokens], | |
"詞形變化": ["/".join(tok.morph.get("Inflection")) for tok in filtered_tokens], | |
"原形": [tok.lemma_ for tok in filtered_tokens], | |
#"正規形": [tok.norm_ for tok in verbs], | |
} | |
) | |
st.dataframe(df) | |
csv = df.to_csv().encode('utf-8') | |
st.download_button( | |
label="下載表格", | |
data=csv, | |
file_name='jap_forms.csv', | |
) | |
def filter_tokens(doc): | |
clean_tokens = [tok for tok in doc if tok.pos_ not in ["PUNCT", "SYM"]] | |
clean_tokens = [tok for tok in clean_tokens if not tok.like_email] | |
clean_tokens = [tok for tok in clean_tokens if not tok.like_url] | |
clean_tokens = [tok for tok in clean_tokens if not tok.like_num] | |
clean_tokens = [tok for tok in clean_tokens if not tok.is_punct] | |
clean_tokens = [tok for tok in clean_tokens if not tok.is_space] | |
return clean_tokens | |
def create_kw_section(doc): | |
st.markdown("## 關鍵詞分析") | |
kw_num = st.slider("請選擇關鍵詞數量", 1, 10, 3) | |
kws2scores = {keyword: score for keyword, score in doc._.extract_keywords(n=kw_num)} | |
kws2scores = sorted(kws2scores.items(), key=lambda x: x[1], reverse=True) | |
count = 1 | |
for keyword, score in kws2scores: | |
rounded_score = round(score, 3) | |
st.write(f"{count} >>> {keyword} ({rounded_score})") | |
count += 1 | |
# Page setting | |
st.set_page_config( | |
page_icon="🤠", | |
layout="wide", | |
initial_sidebar_state="auto", | |
) | |
st.markdown(f"# {DESCRIPTION}") | |
# Load the model | |
nlp = spacy.load(MODEL_NAME) | |
# Add pipelines to spaCy | |
nlp.add_pipe("yake") # keyword extraction | |
# nlp.add_pipe("merge_entities") # Merge entity spans to tokens | |
# Page starts from here | |
st.markdown("## 待分析文本") | |
st.info("請在下面的文字框輸入文本並按下Ctrl + Enter以更新分析結果") | |
text = st.text_area("", DEFAULT_TEXT, height=200) | |
doc = nlp(text) | |
st.markdown("---") | |
st.info("請勾選以下至少一項功能") | |
keywords_extraction = st.checkbox("關鍵詞分析", False) | |
analyzed_text = st.checkbox("增強文本", True) | |
defs_examples = st.checkbox("單詞解析", True) | |
morphology = st.checkbox("詞形變化", False) | |
ner_viz = st.checkbox("命名實體", True) | |
tok_table = st.checkbox("斷詞特徵", False) | |
if keywords_extraction: | |
create_kw_section(doc) | |
if analyzed_text: | |
st.markdown("## 分析後文本") | |
for idx, sent in enumerate(doc.sents): | |
clean_tokens = [tok for tok in sent if tok.pos_ not in ["PUNCT", "SYM"]] | |
tokens_text = [tok.text for tok in clean_tokens] | |
readings = ["/".join(tok.morph.get("Reading")) for tok in clean_tokens] | |
display = [f"{text} [{reading}]" for text, reading in zip(tokens_text, readings)] | |
if display: | |
display_text = TOK_SEP.join(display) | |
st.write(f"{idx+1} >>> {display_text}") | |
else: | |
st.write(f"{idx+1} >>> EMPTY LINE") | |
if defs_examples: | |
st.markdown("## 單詞解釋與例句") | |
clean_tokens = filter_tokens(doc) | |
alphanum_pattern = re.compile(r"[a-zA-Z0-9]") | |
clean_lemmas = [tok.lemma_ for tok in clean_tokens if not alphanum_pattern.search(tok.lemma_)] | |
vocab = list(set(clean_lemmas)) | |
if vocab: | |
selected_words = st.multiselect("請選擇要查詢的單詞: ", vocab, vocab[0:3]) | |
for w in selected_words: | |
st.write(f"### {w}") | |
with st.expander("點擊 + 檢視結果"): | |
parse_jisho_senses(w) | |
parse_jisho_sentences(w) | |
if morphology: | |
st.markdown("## 詞形變化") | |
# Collect inflected forms | |
inflected_forms = [tok for tok in doc if tok.tag_.startswith("動詞") or tok.tag_.startswith("形")] | |
if inflected_forms: | |
create_jap_df(inflected_forms) | |
if ner_viz: | |
ner_labels = nlp.get_pipe("ner").labels | |
visualize_ner(doc, labels=ner_labels, show_table=False, title="命名實體") | |
if tok_table: | |
visualize_tokens(doc, attrs=["text", "pos_", "tag_", "dep_", "head"], title="斷詞特徵") | |