jeffeux's picture
Migrate to HF Space
d825710
import pandas as pd
import re
import requests
import spacy
from spacy_streamlit import visualize_ner, visualize_tokens
#from spacy.language import Language
from spacy.tokens import Doc
import spacy_ke
import streamlit as st
# Global variables
DEFAULT_TEXT = """So I lived my life alone, without anyone that I could really talk to, until I had an accident with my plane in the Desert of Sahara, six years ago. Something was broken in my engine. And as I had with me neither a mechanic nor any passengers, I set myself to attempt the difficult repairs all alone. It was a question of life or death for me: I had scarcely enough drinking water to last a week. The first night, then, I went to sleep on the sand, a thousand miles from any human habitation. I was more isolated than a shipwrecked sailor on a raft in the middle of the ocean. Thus you can imagine my amazement, at sunrise, when I was awakened by an odd little voice. It said:
"If you please−− draw me a sheep!"
"What!"
"Draw me a sheep!"
The Little Prince
"""
DESCRIPTION = "AI模型輔助語言學習:英語"
TOK_SEP = " | "
MODEL_NAME = "en_core_web_sm"
API_LOOKUP = {}
MAX_SYM_NUM = 5
# External API caller
def free_dict_caller(word):
req = requests.get(f"https://api.dictionaryapi.dev/api/v2/entries/en/{word}")
try:
result = req.json()[0]
if word not in API_LOOKUP:
API_LOOKUP[word] = result
except:
pass
def show_definitions_and_examples(word, pos):
if word not in API_LOOKUP:
free_dict_caller(word)
result = API_LOOKUP.get(word)
if result:
meanings = result.get('meanings')
if meanings:
definitions = []
for meaning in meanings:
if meaning['partOfSpeech'] == pos.lower():
definitions = meaning.get('definitions')
if len(definitions) > 3:
definitions = definitions[:3]
for definition in definitions:
df = definition.get("definition")
ex = definition.get("example")
st.markdown(f" - {df}")
st.markdown(f" Example: *{ex}*")
st.markdown("---")
else:
st.info("Found no matching result on Free Dictionary!")
def get_synonyms(word, pos):
if word not in API_LOOKUP:
free_dict_caller(word)
result = API_LOOKUP.get(word)
if result:
meanings = result.get('meanings')
if meanings:
synonyms = []
for meaning in meanings:
if meaning['partOfSpeech'] == pos.lower():
synonyms = meaning.get('synonyms')
return synonyms
# Utility functions
def create_eng_df(tokens):
seen_texts = []
filtered_tokens = []
for tok in tokens:
if tok.lemma_ not in seen_texts:
filtered_tokens.append(tok)
df = pd.DataFrame(
{
"單詞": [tok.text.lower() for tok in filtered_tokens],
"詞類": [tok.pos_ for tok in filtered_tokens],
"原形": [tok.lemma_ for tok in filtered_tokens],
}
)
st.dataframe(df)
csv = df.to_csv().encode('utf-8')
st.download_button(
label="下載表格",
data=csv,
file_name='eng_forms.csv',
)
def filter_tokens(doc):
clean_tokens = [tok for tok in doc if tok.pos_ not in ["PUNCT", "SYM"]]
clean_tokens = [tok for tok in clean_tokens if not tok.like_email]
clean_tokens = [tok for tok in clean_tokens if not tok.like_url]
clean_tokens = [tok for tok in clean_tokens if not tok.like_num]
clean_tokens = [tok for tok in clean_tokens if not tok.is_punct]
clean_tokens = [tok for tok in clean_tokens if not tok.is_space]
return clean_tokens
def create_kw_section(doc):
st.markdown("## 關鍵詞分析")
kw_num = st.slider("請選擇關鍵詞數量", 1, 10, 3)
kws2scores = {keyword: score for keyword, score in doc._.extract_keywords(n=kw_num)}
kws2scores = sorted(kws2scores.items(), key=lambda x: x[1], reverse=True)
count = 1
for keyword, score in kws2scores:
rounded_score = round(score, 3)
st.write(f"{count} >>> {keyword} ({rounded_score})")
count += 1
# Page setting
st.set_page_config(
page_icon="🤠",
layout="wide",
initial_sidebar_state="auto",
)
st.markdown(f"# {DESCRIPTION}")
# Load the language model
nlp = spacy.load(MODEL_NAME)
# Add pipelines to spaCy
nlp.add_pipe("yake") # keyword extraction
# nlp.add_pipe("merge_entities") # Merge entity spans to tokens
# Page starts from here
st.markdown("## 待分析文本")
st.info("請在下面的文字框輸入文本並按下Ctrl + Enter以更新分析結果")
text = st.text_area("", DEFAULT_TEXT, height=200)
doc = nlp(text)
st.markdown("---")
st.info("請勾選以下至少一項功能")
keywords_extraction = st.checkbox("關鍵詞分析", False)
analyzed_text = st.checkbox("增強文本", True)
defs_examples = st.checkbox("單詞解析", True)
morphology = st.checkbox("詞形變化", False)
ner_viz = st.checkbox("命名實體", True)
tok_table = st.checkbox("斷詞特徵", False)
if keywords_extraction:
create_kw_section(doc)
if analyzed_text:
st.markdown("## 分析後文本")
for idx, sent in enumerate(doc.sents):
enriched_sentence = []
for tok in sent:
if tok.pos_ != "VERB":
enriched_sentence.append(tok.text)
else:
synonyms = get_synonyms(tok.text, tok.pos_)
if synonyms:
if len(synonyms) > MAX_SYM_NUM:
synonyms = synonyms[:MAX_SYM_NUM]
added_verbs = " | ".join(synonyms)
enriched_tok = f"{tok.text} (cf. {added_verbs})"
enriched_sentence.append(enriched_tok)
else:
enriched_sentence.append(tok.text)
display_text = " ".join(enriched_sentence)
st.write(f"{idx+1} >>> {display_text}")
if defs_examples:
st.markdown("## 單詞解釋與例句")
clean_tokens = filter_tokens(doc)
num_pattern = re.compile(r"[0-9]")
clean_tokens = [tok for tok in clean_tokens if not num_pattern.search(tok.lemma_)]
selected_pos = ["VERB", "NOUN", "ADJ", "ADV"]
clean_tokens = [tok for tok in clean_tokens if tok.pos_ in selected_pos]
tokens_lemma_pos = [tok.lemma_ + " | " + tok.pos_ for tok in clean_tokens]
vocab = list(set(tokens_lemma_pos))
if vocab:
selected_words = st.multiselect("請選擇要查詢的單詞: ", vocab, vocab[0:3])
for w in selected_words:
word_pos = w.split("|")
word = word_pos[0].strip()
pos = word_pos[1].strip()
st.write(f"### {w}")
with st.expander("點擊 + 檢視結果"):
show_definitions_and_examples(word, pos)
if morphology:
st.markdown("## 詞形變化")
# Collect inflected forms
inflected_forms = [tok for tok in doc if tok.text.lower() != tok.lemma_.lower()]
if inflected_forms:
create_eng_df(inflected_forms)
if ner_viz:
ner_labels = nlp.get_pipe("ner").labels
visualize_ner(doc, labels=ner_labels, show_table=False, title="命名實體")
if tok_table:
visualize_tokens(doc, attrs=["text", "pos_", "tag_", "dep_", "head"], title="斷詞特徵")