Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
import re | |
from tensorflow import keras | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from tensorflow.keras.layers import TextVectorization | |
import pickle | |
import os | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | |
def custom_standardization(input_data): | |
lowercase = tf.strings.lower(input_data) | |
stripped_html = tf.strings.regex_replace(lowercase, "<br />", " ") | |
return tf.strings.regex_replace( | |
stripped_html, "[%s]" % re.escape("!#$%&'()*+,-./:;<=>?@\^_`{|}~"), "" | |
) | |
count_vect = pickle.load(open('countvect.pkl', 'rb')) | |
tokenizer = pickle.load(open('tokenizer.pkl', 'rb')) | |
from_disk = pickle.load(open('tv_layer.pkl', 'rb')) | |
text_vectorization = TextVectorization.from_config(from_disk['config']) | |
text_vectorization.set_weights(from_disk['weights']) | |
lr_model = pickle.load(open('logistic_model.pkl', 'rb')) | |
lstm_model = keras.models.load_model('lstm_model.h5') | |
bert_classifier_model = keras.models.load_model('bert_classifier.h5') | |
def get_bert_end_to_end(model): | |
inputs_string = keras.Input(shape=(1,), dtype="string") | |
indices = text_vectorization(inputs_string) | |
outputs = model(indices) | |
end_to_end_model = keras.Model(inputs_string, outputs, name="end_to_end_model") | |
optimizer = keras.optimizers.Adam(learning_rate=0.001) | |
end_to_end_model.compile( | |
optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"] | |
) | |
return end_to_end_model | |
bert_end_model = get_bert_end_to_end(bert_classifier_model) | |
def get_lr_results(text): | |
sample_vec = count_vect.transform([text]) | |
return lr_model.predict(sample_vec)[0] | |
def get_lstm_results(text): | |
tokenized_text = tokenizer.texts_to_sequences([text]) | |
padded_tokens = pad_sequences(tokenized_text, maxlen=200) | |
return lstm_model.predict(padded_tokens)[0][0] | |
def get_bert_results(text): | |
return bert_end_model.predict([text])[0][0] | |
def decide(text): | |
lr_result = get_lr_results(text) | |
lstm_result = get_lstm_results(text) | |
bert_result = get_bert_results(text) | |
results = [ | |
lr_result.round(2), | |
lstm_result.round(2), | |
bert_result.round(2)] | |
if lstm_result >= 0.6: | |
return "Positive review (LR: {}, LSTM: {}, BERT: {}".format(*results) | |
elif lstm_result <= 0.4: | |
return "Negative review (LR: {}, LSTM: {}, BERT: {}".format(*results) | |
else: | |
return "Neutral review (LR: {}, LSTM: {}, BERT: {}".format(*results) | |
example_sentence_1 = "I hate this toaster, they made no effort in making it. So cheap, it almost immediately broke!" | |
example_sentence_2 = "Great toaster! We love the way it toasted my bread so quickly. Very high quality components too." | |
examples = [[example_sentence_1], [example_sentence_2]] | |
description = "Write out a product review to know the underlying sentiment." | |
gr.Interface(decide, | |
inputs=gr.inputs.Textbox(lines=1, placeholder=None, default="", label=None), | |
outputs='text', | |
examples=examples, | |
title="Sentiment analysis of product reviews", | |
theme="grass", description=description, | |
allow_flagging="auto", | |
flagging_dir='flagging records').launch(enable_queue=True, inline=False, share=True) | |