jeffyuyu commited on
Commit
2e59db3
·
verified ·
1 Parent(s): 423713e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -25
app.py CHANGED
@@ -1,13 +1,12 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
  import torch
 
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "jeffyuyu/labeled_images_demo_BLIP2" # Replace to the model you would like to use
11
 
12
  if torch.cuda.is_available():
13
  torch_dtype = torch.float16
@@ -20,8 +19,10 @@ pipe = pipe.to(device)
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
 
 
 
23
 
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
  def infer(
26
  prompt,
27
  negative_prompt,
@@ -35,9 +36,7 @@ def infer(
35
  ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
-
39
  generator = torch.Generator().manual_seed(seed)
40
-
41
  image = pipe(
42
  prompt=prompt,
43
  negative_prompt=negative_prompt,
@@ -47,10 +46,8 @@ def infer(
47
  height=height,
48
  generator=generator,
49
  ).images[0]
50
-
51
  return image, seed
52
 
53
-
54
  examples = [
55
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
  "An astronaut riding a green horse",
@@ -66,8 +63,13 @@ css = """
66
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
 
 
 
 
 
71
  with gr.Row():
72
  prompt = gr.Text(
73
  label="Prompt",
@@ -76,11 +78,8 @@ with gr.Blocks(css=css) as demo:
76
  placeholder="Enter your prompt",
77
  container=False,
78
  )
79
-
80
  run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
  result = gr.Image(label="Result", show_label=False)
83
-
84
  with gr.Accordion("Advanced Settings", open=False):
85
  negative_prompt = gr.Text(
86
  label="Negative prompt",
@@ -88,7 +87,6 @@ with gr.Blocks(css=css) as demo:
88
  placeholder="Enter a negative prompt",
89
  visible=False,
90
  )
91
-
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
@@ -96,44 +94,46 @@ with gr.Blocks(css=css) as demo:
96
  step=1,
97
  value=0,
98
  )
99
-
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
  with gr.Row():
103
  width = gr.Slider(
104
  label="Width",
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
-
111
  height = gr.Slider(
112
  label="Height",
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
-
119
  with gr.Row():
120
  guidance_scale = gr.Slider(
121
  label="Guidance scale",
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
-
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
  maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
-
136
  gr.Examples(examples=examples, inputs=[prompt])
 
 
 
 
 
 
 
 
137
  gr.on(
138
  triggers=[run_button.click, prompt.submit],
139
  fn=infer,
@@ -151,4 +151,4 @@ with gr.Blocks(css=css) as demo:
151
  )
152
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
 
4
  from diffusers import DiffusionPipeline
5
  import torch
6
+ from datasets import load_dataset
7
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ model_repo_id = "stabilityai/sdxl-turbo" # 替換成你要使用的模型
10
 
11
  if torch.cuda.is_available():
12
  torch_dtype = torch.float16
 
19
  MAX_SEED = np.iinfo(np.int32).max
20
  MAX_IMAGE_SIZE = 1024
21
 
22
+ # 載入你的 dataset,這裡假設有一個 "prompt" 欄位
23
+ dataset = load_dataset("jeffyuyu/labeled_images_demo_BLIP2", split="train")
24
+ dataset_prompts = list(dataset["prompt"])
25
 
 
26
  def infer(
27
  prompt,
28
  negative_prompt,
 
36
  ):
37
  if randomize_seed:
38
  seed = random.randint(0, MAX_SEED)
 
39
  generator = torch.Generator().manual_seed(seed)
 
40
  image = pipe(
41
  prompt=prompt,
42
  negative_prompt=negative_prompt,
 
46
  height=height,
47
  generator=generator,
48
  ).images[0]
 
49
  return image, seed
50
 
 
51
  examples = [
52
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
53
  "An astronaut riding a green horse",
 
63
 
64
  with gr.Blocks(css=css) as demo:
65
  with gr.Column(elem_id="col-container"):
66
+ gr.Markdown("# Text-to-Image Gradio Template")
67
+ # 新增下拉選單,從 dataset 中選取 prompt
68
+ dataset_selector = gr.Dropdown(
69
+ choices=dataset_prompts,
70
+ label="或從資料集中選取一個 prompt",
71
+ value=dataset_prompts[0] if dataset_prompts else "",
72
+ )
73
  with gr.Row():
74
  prompt = gr.Text(
75
  label="Prompt",
 
78
  placeholder="Enter your prompt",
79
  container=False,
80
  )
 
81
  run_button = gr.Button("Run", scale=0, variant="primary")
 
82
  result = gr.Image(label="Result", show_label=False)
 
83
  with gr.Accordion("Advanced Settings", open=False):
84
  negative_prompt = gr.Text(
85
  label="Negative prompt",
 
87
  placeholder="Enter a negative prompt",
88
  visible=False,
89
  )
 
90
  seed = gr.Slider(
91
  label="Seed",
92
  minimum=0,
 
94
  step=1,
95
  value=0,
96
  )
 
97
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
98
  with gr.Row():
99
  width = gr.Slider(
100
  label="Width",
101
  minimum=256,
102
  maximum=MAX_IMAGE_SIZE,
103
  step=32,
104
+ value=1024,
105
  )
 
106
  height = gr.Slider(
107
  label="Height",
108
  minimum=256,
109
  maximum=MAX_IMAGE_SIZE,
110
  step=32,
111
+ value=1024,
112
  )
 
113
  with gr.Row():
114
  guidance_scale = gr.Slider(
115
  label="Guidance scale",
116
  minimum=0.0,
117
  maximum=10.0,
118
  step=0.1,
119
+ value=0.0,
120
  )
 
121
  num_inference_steps = gr.Slider(
122
  label="Number of inference steps",
123
  minimum=1,
124
  maximum=50,
125
  step=1,
126
+ value=2,
127
  )
 
128
  gr.Examples(examples=examples, inputs=[prompt])
129
+
130
+ # 按鈕:使用下拉選單選取的 prompt 填入上面的 prompt 輸入框
131
+ def fill_prompt(selected_prompt):
132
+ return selected_prompt
133
+
134
+ dataset_btn = gr.Button("填入資料集中的 prompt")
135
+ dataset_btn.click(fn=fill_prompt, inputs=dataset_selector, outputs=prompt)
136
+
137
  gr.on(
138
  triggers=[run_button.click, prompt.submit],
139
  fn=infer,
 
151
  )
152
 
153
  if __name__ == "__main__":
154
+ demo.launch()