Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import from_pretrained_fastai
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
from fastai.vision.all import *
|
| 6 |
+
|
| 7 |
+
import torchvision.transforms as transforms
|
| 8 |
+
import torchvision.transforms as transforms
|
| 9 |
+
|
| 10 |
+
from fastai.basics import *
|
| 11 |
+
from fastai.vision import models
|
| 12 |
+
from fastai.vision.all import *
|
| 13 |
+
from fastai.metrics import *
|
| 14 |
+
from fastai.data.all import *
|
| 15 |
+
from fastai.callback import *
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
|
| 18 |
+
import random
|
| 19 |
+
import PIL
|
| 20 |
+
|
| 21 |
+
#Definimos las funciones de transformacion que hemos creado en la practica para poder tratar los datos de entrada y que funcione bien
|
| 22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
+
def transform_image(image):
|
| 24 |
+
my_transforms = transforms.Compose([transforms.ToTensor(),
|
| 25 |
+
transforms.Normalize(
|
| 26 |
+
[0.485, 0.456, 0.406],
|
| 27 |
+
[0.229, 0.224, 0.225])])
|
| 28 |
+
image_aux = image
|
| 29 |
+
return my_transforms(image_aux).unsqueeze(0).to(device)
|
| 30 |
+
|
| 31 |
+
class TargetMaskConvertTransform(ItemTransform):
|
| 32 |
+
def __init__(self):
|
| 33 |
+
pass
|
| 34 |
+
def encodes(self, x):
|
| 35 |
+
img,mask = x
|
| 36 |
+
|
| 37 |
+
#Convertimos a array
|
| 38 |
+
mask = np.array(mask)
|
| 39 |
+
|
| 40 |
+
mask[(mask!=255) & (mask!=150) & (mask!=76) & (mask!=74) & (mask!=29) & (mask!=25)]=0
|
| 41 |
+
mask[mask==255]=1
|
| 42 |
+
mask[mask==150]=2
|
| 43 |
+
mask[mask==76]=4
|
| 44 |
+
mask[mask==74]=4
|
| 45 |
+
mask[mask==29]=3
|
| 46 |
+
mask[mask==25]=3
|
| 47 |
+
|
| 48 |
+
# Back to PILMask
|
| 49 |
+
mask = PILMask.create(mask)
|
| 50 |
+
return img, mask
|
| 51 |
+
|
| 52 |
+
from albumentations import (
|
| 53 |
+
Compose,
|
| 54 |
+
OneOf,
|
| 55 |
+
ElasticTransform,
|
| 56 |
+
GridDistortion,
|
| 57 |
+
OpticalDistortion,
|
| 58 |
+
HorizontalFlip,
|
| 59 |
+
Rotate,
|
| 60 |
+
Transpose,
|
| 61 |
+
CLAHE,
|
| 62 |
+
ShiftScaleRotate
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
def get_y_fn (x):
|
| 66 |
+
return Path(str(x).replace("Images","Labels").replace("color","gt").replace(".jpg",".png"))
|
| 67 |
+
|
| 68 |
+
class SegmentationAlbumentationsTransform(ItemTransform):
|
| 69 |
+
split_idx = 0
|
| 70 |
+
|
| 71 |
+
def __init__(self, aug):
|
| 72 |
+
self.aug = aug
|
| 73 |
+
|
| 74 |
+
def encodes(self, x):
|
| 75 |
+
img,mask = x
|
| 76 |
+
aug = self.aug(image=np.array(img), mask=np.array(mask))
|
| 77 |
+
return PILImage.create(aug["image"]), PILMask.create(aug["mask"])
|
| 78 |
+
|
| 79 |
+
#Cargamos el modelo
|
| 80 |
+
repo_id = "luisvarona/Practica3"
|
| 81 |
+
learn = from_pretrained_fastai(repo_id)
|
| 82 |
+
model = learn.model
|
| 83 |
+
model = model.cpu()
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# Funcion de predicci贸n
|
| 87 |
+
def predict(img_ruta):
|
| 88 |
+
img = PIL.Image.fromarray(img_ruta)
|
| 89 |
+
image = transforms.Resize((480,640))(img)
|
| 90 |
+
tensor = transform_image(image=image)
|
| 91 |
+
model.to(device)
|
| 92 |
+
with torch.no_grad():
|
| 93 |
+
outputs = model(tensor)
|
| 94 |
+
|
| 95 |
+
outputs = torch.argmax(outputs,1)
|
| 96 |
+
mask = np.array(outputs.cpu())
|
| 97 |
+
mask[mask==1]=255
|
| 98 |
+
mask[mask==2]=150
|
| 99 |
+
mask[mask==3]=29
|
| 100 |
+
mask[mask==4]=74
|
| 101 |
+
mask = np.reshape(mask,(480,640))
|
| 102 |
+
return Image.fromarray(mask.astype('uint8'))
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# Creamos la interfaz y la lanzamos.
|
| 106 |
+
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(480, 640)), outputs=gr.inputs.Image(shape=(480, 640)), examples=['color_184.jpg','color_189.jpg']).launch(share=False)
|