jegilj commited on
Commit
671e0f2
1 Parent(s): ff8c885

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +105 -0
app.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import from_pretrained_fastai
2
+ import gradio as gr
3
+
4
+ from fastai.vision.all import *
5
+
6
+ import torchvision.transforms as transforms
7
+ import torchvision.transforms as transforms
8
+
9
+ from fastai.basics import *
10
+ from fastai.vision import models
11
+ from fastai.vision.all import *
12
+ from fastai.metrics import *
13
+ from fastai.data.all import *
14
+ from fastai.callback import *
15
+ from pathlib import Path
16
+
17
+ import random
18
+ import PIL
19
+
20
+ #Definimos las funciones de transformacion que hemos creado en la practica para poder tratar los datos de entrada y que funcione bien
21
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
22
+ def transform_image(image):
23
+ my_transforms = transforms.Compose([transforms.ToTensor(),
24
+ transforms.Normalize(
25
+ [0.485, 0.456, 0.406],
26
+ [0.229, 0.224, 0.225])])
27
+ image_aux = image
28
+ return my_transforms(image_aux).unsqueeze(0).to(device)
29
+
30
+ class TargetMaskConvertTransform(ItemTransform):
31
+ def __init__(self):
32
+ pass
33
+ def encodes(self, x):
34
+ img,mask = x
35
+
36
+ #Convertimos a array
37
+ mask = np.array(mask)
38
+
39
+ mask[(mask!=255) & (mask!=150) & (mask!=76) & (mask!=74) & (mask!=29) & (mask!=25)]=0
40
+ mask[mask==255]=1
41
+ mask[mask==150]=2
42
+ mask[mask==76]=4
43
+ mask[mask==74]=4
44
+ mask[mask==29]=3
45
+ mask[mask==25]=3
46
+
47
+ # Back to PILMask
48
+ mask = PILMask.create(mask)
49
+ return img, mask
50
+
51
+ from albumentations import (
52
+ Compose,
53
+ OneOf,
54
+ ElasticTransform,
55
+ GridDistortion,
56
+ OpticalDistortion,
57
+ HorizontalFlip,
58
+ Rotate,
59
+ Transpose,
60
+ CLAHE,
61
+ ShiftScaleRotate
62
+ )
63
+
64
+ def get_y_fn (x):
65
+ return Path(str(x).replace("Images","Labels").replace("color","gt").replace(".jpg",".png"))
66
+
67
+ class SegmentationAlbumentationsTransform(ItemTransform):
68
+ split_idx = 0
69
+
70
+ def __init__(self, aug):
71
+ self.aug = aug
72
+
73
+ def encodes(self, x):
74
+ img,mask = x
75
+ aug = self.aug(image=np.array(img), mask=np.array(mask))
76
+ return PILImage.create(aug["image"]), PILMask.create(aug["mask"])
77
+
78
+ #Cargamos el modelo
79
+ repo_id = "jegilj/Practica3"
80
+ learn = from_pretrained_fastai(repo_id)
81
+ model = learn.model
82
+ model = model.cpu()
83
+
84
+
85
+ # Funcion de predicción
86
+ def predict(img_ruta):
87
+ img = PIL.Image.fromarray(img_ruta)
88
+ image = transforms.Resize((480,640))(img)
89
+ tensor = transform_image(image=image)
90
+ model.to(device)
91
+ with torch.no_grad():
92
+ outputs = model(tensor)
93
+
94
+ outputs = torch.argmax(outputs,1)
95
+ mask = np.array(outputs.cpu())
96
+ mask[mask==1]=255
97
+ mask[mask==2]=150
98
+ mask[mask==3]=29
99
+ mask[mask==4]=74
100
+ mask = np.reshape(mask,(480,640))
101
+ return Image.fromarray(mask.astype('uint8'))
102
+
103
+
104
+ # Creamos la interfaz y la lanzamos.
105
+ gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(480, 640)), outputs=gr.inputs.Image(shape=(480, 640)), examples=['color_184.jpg','color_189.jpg']).launch(share=False)