Uday007's picture
Update app.py
f0deeb2
raw
history blame
679 Bytes
import gradio as gr
import pandas as pd
from joblib import load
def predict_bodymass(FlipperLength):
model = load("penguin_predictor.jb")
# Create DataFrame from input
data = {
"FlipperLength": [FlipperLength]
}
xin = pd.DataFrame(data)
bodymass = model.predict(xin)
return bodymass[0]
iface = gr.Interface(
fn=predict_bodymass,
inputs=[
gr.inputs.Number(
label="Flipper Length (mm)",
min_value=0,
max_value=500,
default=0
)
],
outputs=gr.outputs.Textbox(label="Body Mass"),
title="PENGUIN REGRESSION"
)
if __name__ == "__main__":
iface.launch()