File size: 14,581 Bytes
80eac1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# Copyright 2024 Jen-Hung Wang, IDUN Section, Department of Health Technology, Technical University of Denmark (DTU)

import time
import sys
import warnings
import csv
import cv2
import math
from pathlib import Path
from utils.growcut import *
from ultralytics import YOLO
from sklearn.neighbors import KernelDensity
from sklearn.model_selection import GridSearchCV

warnings.filterwarnings('ignore')
DIR_NAME = Path(os.path.dirname(__file__)).parent
np.set_printoptions(threshold=sys.maxsize)
# Use GPU
# torch.cuda.set_device(0) # Set to your desired GPU number

# Model Path
DETECTION_MODEL_n = os.path.join(DIR_NAME, 'models', 'YOLOv8-N_CNO_Detection.pt')
DETECTION_MODEL_s = os.path.join(DIR_NAME, 'models', 'YOLOv8-S_CNO_Detection.pt')
DETECTION_MODEL_m = os.path.join(DIR_NAME, 'models', 'YOLOv8-M_CNO_Detection.pt')
DETECTION_MODEL_l = os.path.join(DIR_NAME, 'models', 'YOLOv8-L_CNO_Detection.pt')
DETECTION_MODEL_x = os.path.join(DIR_NAME, 'models', 'YOLOv8-X_CNO_Detection.pt')
# DETECTION_MODEL_c = os.path.join(DIR_NAME, 'models', 'YOLOv9-C_CNO_Detection.pt')
# DETECTION_MODEL_e = os.path.join(DIR_NAME, 'models', 'YOLOv9-E_CNO_Detection.pt')

def numcat(arr):
    arr_size = arr.shape[0]
    arr_cat = np.empty([arr_size, 1], dtype=np.int32)
    for i in range(arr.shape[0]):
        arr_cat[i] = arr[i][0] * 1000 + arr[i][1]
    return arr_cat


def cno_detection(source, kde_dir, conf, cno_model, file_list, model_type):

    # Declare Parameters
    cno_col = []
    total_layer_area = []
    total_layer_cno = []
    total_layer_density = []
    avg_area_col = []
    total_area_col = []

    detection_results = cno_model.predict(source, save=False, save_txt=False, iou=0.5, conf=conf, max_det=1200)

    # CNO Analysis
    for idx, result in enumerate(detection_results):
        CNO = len(result.boxes)
        single_layer_area = []
        single_layer_cno = []
        single_layer_density = []
        total_area = 0
        if CNO < 5:
            avg_area_col.append(np.nan)
            total_area_col.append(np.nan)
            nan_arr = np.empty([25])
            nan_arr[:] = np.nan
            total_layer_area.append(nan_arr)
            total_layer_cno.append(nan_arr)
            total_layer_density.append(nan_arr)
        else:
            CNO_coor = np.empty([CNO, 2], dtype=int)
            for j in range(CNO):
                w = result.boxes.xywh[j][2]
                h = result.boxes.xywh[j][3]
                area = (math.pi * w * h / 4) * 20 * 20 / (512 * 512)
                total_area += area
                bbox_img = result.orig_img
                x = round(result.boxes.xywh[j][0].item())
                y = round(result.boxes.xywh[j][1].item())

                x1 = round(result.boxes.xyxy[j][0].item())
                y1 = round(result.boxes.xyxy[j][1].item())
                x2 = round(result.boxes.xyxy[j][2].item())
                y2 = round(result.boxes.xyxy[j][3].item())

                CNO_coor[j] = [x, y]
                bbox_img = cv2.rectangle(bbox_img,
                                         (x1, y1),
                                         (x2, y2),
                                         (0, 255, 0), 1)

            avg_area = total_area / CNO
            avg_area_col.append(round(avg_area.item(), 4))
            total_area_col.append(round(total_area.item(), 4))

            cv2.imwrite(os.path.join(kde_dir, '{}_{}_{}_bbox.png'.format(file_list[idx], model_type, conf)),
                        bbox_img)

            kde = KernelDensity(metric='euclidean', kernel='gaussian', algorithm='ball_tree')

            # Finding Optimal Bandwidth
            ti = time.time()
            if CNO < 7:
                fold = CNO
            else:
                fold = 7
            gs = GridSearchCV(kde, {'bandwidth': np.linspace(20, 60, 41)}, cv=fold)
            cv = gs.fit(CNO_coor)
            bw = cv.best_params_['bandwidth']
            tf = time.time()
            print("Finding optimal bandwidth={:.2f} ({:n}-fold cross-validation): {:.2f} secs".format(bw, cv.cv,
                                                                                                      (tf - ti)))
            kde.bandwidth = bw
            _ = kde.fit(CNO_coor)

            xgrid = np.arange(0, bbox_img.shape[1], 1)
            ygrid = np.arange(0, bbox_img.shape[0], 1)
            xv, yv = np.meshgrid(xgrid, ygrid)
            xys = np.vstack([xv.ravel(), yv.ravel()]).T
            gdim = xv.shape
            zi = np.arange(xys.shape[0])
            zXY = xys
            z = np.exp(kde.score_samples(zXY))
            zg = -9999 + np.zeros(xys.shape[0])
            zg[zi] = z

            xyz = np.hstack((xys[:, :2], zg[:, None]))
            x = xyz[:, 0].reshape(gdim)
            y = xyz[:, 1].reshape(gdim)
            z = xyz[:, 2].reshape(gdim)
            levels = np.linspace(0, z.max(), 26)
            print("levels", levels)

            for j in range(len(levels) - 1):
                area = np.argwhere(z >= levels[j])
                area_concatenate = numcat(area)
                CNO_concatenate = numcat(CNO_coor)
                ecno = np.count_nonzero(np.isin(area_concatenate, CNO_concatenate))
                layer_area = area.shape[0]
                if layer_area == 0:
                    density = np.round(0.0, 4)
                else:
                    density = np.round((ecno / layer_area) * 512 * 512 / 400, 4)
                print("Level {}: Area={}, CNO={}, density={}".format(j, layer_area, ecno, density))
                single_layer_area.append(layer_area)
                single_layer_cno.append(ecno)
                single_layer_density.append(density)

            total_layer_area.append(single_layer_area)
            total_layer_cno.append(single_layer_cno)
            total_layer_density.append(single_layer_density)

            # Plot CNO Distribution
            plt.contourf(x, y, z, levels=levels, cmap=plt.cm.bone)
            plt.axis('off')
            # plt.gcf().set_size_inches(8, 8)
            plt.gcf().set_size_inches(8 * (gdim[1] / gdim[0]), 8)
            plt.gca().invert_yaxis()
            plt.xlim(0, gdim[1] - 1)
            plt.ylim(gdim[0] - 1, 0)
            plt.savefig(os.path.join(kde_dir, '{}_{}_{}_KDE.png'.format(file_list[idx], model_type, conf)),
                        bbox_inches='tight', pad_inches=0)
            plt.clf()

            plt.scatter(CNO_coor[:, 0], CNO_coor[:, 1], s=10)
            plt.xlim(0, gdim[1] - 1)
            plt.ylim(0, gdim[0] - 1)
            plt.axis('off')
            plt.gcf().set_size_inches(8, 8)
            plt.gcf().set_size_inches(8 * (gdim[1] / gdim[0]), 8)
            plt.gca().invert_yaxis()
            plt.savefig(os.path.join(kde_dir, '{}_{}_{}_Spatial.png'.format(file_list[idx], model_type, conf)),
                        bbox_inches='tight', pad_inches=0)
            plt.clf()
        cno_col.append(CNO)

    return cno_col, avg_area_col, total_area_col, total_layer_area, total_layer_cno, total_layer_density


def cno_detect(folder_dir, model, conf):

    if model == 'YOLOv8-N':
        CNO_model = YOLO(DETECTION_MODEL_n)
    elif model == 'YOLOv8-S':
        CNO_model = YOLO(DETECTION_MODEL_s)
    elif model == 'YOLOv8-M':
        CNO_model = YOLO(DETECTION_MODEL_m)
    elif model == 'YOLOv8-L':
        CNO_model = YOLO(DETECTION_MODEL_l)
    else:
        CNO_model = YOLO(DETECTION_MODEL_x)
    """  
    elif model == 'YOLOv9-C':
        CNO_model = YOLO(DETECTION_MODEL_c)
    else:
        CNO_model = YOLO(DETECTION_MODEL_e)
    """

    # Search folder path
    folder = folder_dir.split(os.sep)[-1]

    print("Analyzing Folder", folder)

    # Extract folder information
    folder_info = folder.split('_')
    if folder_info[2][0:2] == "TL":
        Country = folder_info[0]
        AD_severity = folder_info[1]
        TLSS = int(folder_info[2].strip("TL"))
        if TLSS == 0:
            lesional = False
        else:
            lesional = True
        Number = int(folder_info[-1].strip("No."))
        AD_group = AD_severity.strip("G")
    else:
        Country = None
        TLSS = None
        lesional = None
        Number = None
        AD_group = None

    run_growcut = True
    timestr = time.strftime("%Y%m%d-%H%M%S")

    CNO_list = []
    Area_sum = []
    Area_avg = []

    file_list = []
    growcut_list = []

    growcut_path = os.path.join(folder_dir, "CNO_Detection", "GrowCut")
    original_png_path = os.path.join(folder_dir, "CNO_Detection", "Image", "Original")
    enhanced_png_path = os.path.join(folder_dir, "CNO_Detection", "Image", "Enhanced")
    kde_png_path = os.path.join(folder_dir, "CNO_Detection", "Image", "KDE")
    save_dir = os.path.join(folder_dir, "CNO_Detection", "Result")
    print("Save Path:", save_dir)

    try:
        os.makedirs(growcut_path, exist_ok=True)
        os.makedirs(original_png_path, exist_ok=True)
        os.makedirs(enhanced_png_path, exist_ok=True)
        os.makedirs(kde_png_path, exist_ok=True)
        if not os.listdir(enhanced_png_path):
            print("Directory is empty")
            run_growcut = True
        else:
            print("Directory is not empty")
            run_growcut = False
        os.makedirs(save_dir, exist_ok=True)
    except OSError as error:
        print("Directory can not be created")

    encyc = []
    walk = os.walk(folder_dir)
    for d, sd, files in walk:
        directory = d.split(os.sep)[-1]
        for fn in files:
            if fn[0:2] != "._" and fn[-10:].lower() == '_trace.bcr' and directory == folder:
                encyc.append(d + os.sep + fn)
    encyc.sort()

    # GrowCut Detection
    if run_growcut:
        for i, fn in enumerate(encyc):
            file, gc_CNO = treat_one_image(fn, growcut_path, original_png_path, enhanced_png_path)
            file_list.append(file)
            growcut_list.append(gc_CNO)
            print(i, end=' ')
    else:
        for i, fn in enumerate(encyc):
            file_list.append(os.path.split(fn)[1][0:-10])

    # CNO Detection & AD Classification
    print("Model", model)
    print("Conf", conf)

    # Make Function
    cno_col, avg_area_col, total_area_col, layer_area, layer_cno, layer_density = cno_detection(enhanced_png_path,
                                                                                                kde_png_path,
                                                                                                conf, CNO_model,
                                                                                                file_list, model)
    CNO_list.append(cno_col)
    Area_sum.append(total_area_col)
    Area_avg.append(avg_area_col)

    Layer_area = layer_area
    Layer_cno = layer_cno
    Layer_density = layer_density

    # Write CSV
    # open the file in the write mode
    f = open(save_dir + os.sep + '{}_{}_{}_{}_.csv'.format(folder, timestr, model, conf), 'w')
    header = ['File', 'Country', 'Group', 'No.', 'TLSS', 'Lesional',

              'Layer_Area_0', 'Layer_Area_1', 'Layer_Area_2', 'Layer_Area_3', 'Layer_Area_4',
              'Layer_Area_5', 'Layer_Area_6', 'Layer_Area_7', 'Layer_Area_8', 'Layer_Area_9',
              'Layer_Area_10', 'Layer_Area_11', 'Layer_Area_12', 'Layer_Area_13', 'Layer_Area_14',
              'Layer_Area_15', 'Layer_Area_16', 'Layer_Area_17', 'Layer_Area_18', 'Layer_Area_19',
              'Layer_Area_20', 'Layer_Area_21', 'Layer_Area_22', 'Layer_Area_23', 'Layer_Area_24',

              'Layer_CNO_0', 'Layer_CNO_1', 'Layer_CNO_2', 'Layer_CNO_3', 'Layer_CNO_4',
              'Layer_CNO_5', 'Layer_CNO_6', 'Layer_CNO_7', 'Layer_CNO_8', 'Layer_CNO_9',
              'Layer_CNO_10', 'Layer_CNO_11', 'Layer_CNO_12', 'Layer_CNO_13', 'Layer_CNO_14',
              'Layer_CNO_15', 'Layer_CNO_16', 'Layer_CNO_17', 'Layer_CNO_18', 'Layer_CNO_19',
              'Layer_CNO_20', 'Layer_CNO_21', 'Layer_CNO_22', 'Layer_CNO_23', 'Layer_CNO_24',

              'Layer_Density_0', 'Layer_Density_1', 'Layer_Density_2', 'Layer_Density_3',
              'Layer_Density_4', 'Layer_Density_5', 'Layer_Density_6', 'Layer_Density_7',
              'Layer_Density_8', 'Layer_Density_9', 'Layer_Density_10', 'Layer_Density_11',
              'Layer_Density_12', 'Layer_Density_13', 'Layer_Density_14', 'Layer_Density_15',
              'Layer_Density_16', 'Layer_Density_17', 'Layer_Density_18', 'Layer_Density_19',
              'Layer_Density_20', 'Layer_Density_21', 'Layer_Density_22', 'Layer_Density_23',
              'Layer_Density_24',

              'AVG_Area', 'AVG_Size']

    writer = csv.writer(f)
    writer.writerow(header)

    for i in range(len(file_list)):
        data = [file_list[i], Country, AD_group, Number, TLSS, lesional,

                Layer_area[i][0], Layer_area[i][1], Layer_area[i][2], Layer_area[i][3], Layer_area[i][4],
                Layer_area[i][5], Layer_area[i][6], Layer_area[i][7], Layer_area[i][8], Layer_area[i][9],
                Layer_area[i][10], Layer_area[i][11], Layer_area[i][12], Layer_area[i][13],
                Layer_area[i][14], Layer_area[i][15], Layer_area[i][16], Layer_area[i][17],
                Layer_area[i][18], Layer_area[i][19], Layer_area[i][20], Layer_area[i][21],
                Layer_area[i][22], Layer_area[i][23], Layer_area[i][24],

                Layer_cno[i][0], Layer_cno[i][1], Layer_cno[i][2], Layer_cno[i][3], Layer_cno[i][4],
                Layer_cno[i][5], Layer_cno[i][6], Layer_cno[i][7], Layer_cno[i][8], Layer_cno[i][9],
                Layer_cno[i][10], Layer_cno[i][11], Layer_cno[i][12], Layer_cno[i][13], Layer_cno[i][14],
                Layer_cno[i][15], Layer_cno[i][16], Layer_cno[i][17], Layer_cno[i][18], Layer_cno[i][19],
                Layer_cno[i][20], Layer_cno[i][21], Layer_cno[i][22], Layer_cno[i][23], Layer_cno[i][24],

                Layer_density[i][0], Layer_density[i][1], Layer_density[i][2], Layer_density[i][3],
                Layer_density[i][4], Layer_density[i][5], Layer_density[i][6], Layer_density[i][7],
                Layer_density[i][8], Layer_density[i][9], Layer_density[i][10], Layer_density[i][11],
                Layer_density[i][12], Layer_density[i][13], Layer_density[i][14], Layer_density[i][15],
                Layer_density[i][16], Layer_density[i][17], Layer_density[i][18], Layer_density[i][19],
                Layer_density[i][20], Layer_density[i][21], Layer_density[i][22], Layer_density[i][23],
                Layer_density[i][24],

                Area_sum[0][i], Area_avg[0][i]]
        writer.writerow(data)
    f.close()