Jen-Hung Wang commited on
Commit
150676c
·
1 Parent(s): 80eac1a

Initial commit

Browse files
Files changed (1) hide show
  1. README.md +8 -62
README.md CHANGED
@@ -1,62 +1,8 @@
1
- # **Stratum corneum nanotexture feature detection using deep learning and spatial analysis: a non-invasive tool for skin barrier assessment**
2
-
3
- <img src="./source/Overview.png" alt="Data Processing" width="95%" />
4
-
5
- This repository presents an automated approach for the data processing of Atomic Force Microscopy (AFM), enabling the construction of an extensive database for further academic investigation and visualization. The program seamlessly integrates critical steps, including the conversion of raw AFM data into PNG files, the utilization of computer vision techniques, and the implementation of state-of-the-art deep learning algorithms for accurate detection of circular nano objects (CNOs) and classification of various skin diseases. In addition, the algorithm incorporates the grid search method to determine the optimal hyperparameter settings, ensuring optimal performance and enhancing the reliability of the results.
6
-
7
- ## **Dependencies**
8
- - Python 3.9+
9
- - matplotlib
10
- - numpy
11
- - opencv-python
12
- - scipy
13
- - scikit-image
14
- - ultralytics
15
- - customtkinter
16
- - scikit-learn
17
- - customtkinter
18
-
19
- ## **Directories**
20
- - `AD_Assessment_GUI.zip` contains a cross-platform executable GUI, sample data, and a tutorial video.
21
- - Folder `corneocyte dataset` contains original corneocyte nanotexture images and annotated images for training AI models.
22
- - Folder `models` contains our fine-tuned YOLOv8-{N,S,M,L,X} and YOLOv9-{C,E} models.
23
-
24
- ## **Usage**
25
- 1. Execution via cross-platform executable GUI
26
- - Unzip `AD_Assessment_GUI.zip`
27
- - Run `AD_Assessment_GUI.exe`
28
- - Analysis results will be saved within the selected path in a folder titled `CNO_Detection`
29
-
30
- 2. Execution via python script
31
- - Install packages in terminal:
32
- ```
33
- pip install -r requirements.txt
34
- ```
35
- - Run `AD_Assessment_GUI.py`
36
- - Analysis results will be saved within the selected path in a folder titled `CNO_Detection`
37
-
38
- ## **Executable**
39
-
40
- 1. Install PyInstaller in terminal:
41
-
42
- ```
43
- pip install pyinstaller
44
- ```
45
-
46
- 2. Run command in terminal:
47
-
48
- ```
49
- pyinstaller --onedir .\AD_Assessment_GUI.py
50
- ```
51
-
52
- ## **Contributions**
53
-
54
- [1] Liao, H-S., Wang, J-H., Raun, E., Nørgaard, L. O., Dons, F. E., & Hwu, E. E-T. (2022). Atopic Dermatitis Severity Assessment using High-Speed Dermal Atomic Force Microscope. Abstract from AFM BioMed Conference 2022, Nagoya-Okazaki, Japan.
55
-
56
- [2] Pereda, J., Liao, H-S., Werner, C., Wang, J-H., Huang, K-Y., Raun, E., Nørgaard, L. O., Dons, F. E., & Hwu, E. E. T. (2022). Hacking Consumer Electronics for Biomedical Imaging. Abstract from 5th Global Conference on Biomedical Engineering & Annual Meeting of TSBME, Taipei, Taiwan, Province of China.
57
-
58
- [3] Liao, H. S., Akhtar, I., Werner, C., Slipets, R., Pereda, J., Wang, J. H., Raun, E., Nørgaard, L. O., Dons, F. E., & Hwu, E. E. T. (2022). Open-source controller for low-cost and high-speed atomic force microscopy imaging of skin corneocyte nanotextures. HardwareX, 12, [e00341]. https://doi.org/10.1016/j.ohx.2022.e00341
59
-
60
- ----
61
-
62
- ### Contact: [Jen-Hung Wang](mailto:[email protected]) / [Professor En-Te Hwu](mailto:[email protected])
 
1
+ title: afm-analysis-web
2
+ emoji: 🐨
3
+ colorFrom: green
4
+ colorTo: red
5
+ sdk: gradio
6
+ sdk_version: 4.31.3
7
+ app_file: app.py
8
+ pinned: false