import os import tempfile import gradio as gr import torch from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read MODEL_NAME = "jensenlwt/whisper-small-singlish-122k" FILE_LIMIT_MB = 1000 device = "cuda:0" if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def transcribe(inputs, task): if inputs is None: raise gr.Error( "No audio file submitted! Please upload or record an audio file before submitting your request." ) text = pipe( inputs, generate_kwargs={"language": "english"}, return_timestamps=True, )["chunks"] return text demo = gr.Blocks() mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio(source="microphone", type="filepath", optional=True), ], outputs="text", layout="horizontal", theme="huggingface", title="Whisper Small: Singlish Edition πŸ‡ΈπŸ‡¬", description=(""), allow_flagging="never", ) file_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio( source="upload", type="filepath", optional=True, label="Audio file" ), ], outputs="text", layout="horizontal", theme="huggingface", title="Whisper Small: Singlish Edition πŸ‡ΈπŸ‡¬", description=( "NOTE: Current space seems to cut off the last few seconds of the recording. For exploration, I would recommend sticking to audio <10s long." ), allow_flagging="never", ) with demo: gr.TabbedInterface( [mf_transcribe, file_transcribe], ["Microphone", "Audio file"], ) demo.launch(enable_queue=True)