File size: 10,187 Bytes
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import os
import json
import csv
import glob
import argparse
import random
import math

import librosa
import soundfile as sf
import pedalboard
import numpy as np
import pyloudnorm as pyln
from scipy.stats import gamma
import torchaudio


def str2bool(v):
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("Boolean value expected.")


def _augment_gain_ozone(audio, low=0.25, high=1.25):
    """Applies a random gain between `low` and `high`"""
    g = low + random.random() * (high - low)
    return audio * g, g


def _augment_channelswap_ozone(audio):
    """Swap channels of stereo signals with a probability of p=0.5"""
    if audio.shape[0] == 2 and random.random() < 0.5:
        return np.flip(audio, axis=0), True  # axis=0 must be given
    else:
        return audio, False


# load wav file from arbitrary positions of 16bit stereo wav file
def load_wav_arbitrary_position_stereo(
    filename, sample_rate, seq_duration, return_pos=False
):
    # stereo
    # seq_duration[second]
    length = torchaudio.info(filename).num_frames

    random_start = random.randint(
        0, int(length - math.ceil(seq_duration * sample_rate) - 1)
    )
    random_start_sec = librosa.samples_to_time(random_start, sr=sample_rate)
    X, sr = librosa.load(
        filename, sr=None, mono=False, offset=random_start_sec, duration=seq_duration
    )

    if return_pos:
        return X, random_start_sec
    else:
        return X


# def main():
parser = argparse.ArgumentParser(description="Preprocess audio files for training")
parser.add_argument(
    "--root",
    type=str,
    default="/path/to/musdb18hq",
    help="Root directory",
)
parser.add_argument(
    "--output",
    type=str,
    default="/path/to/musdb-XL-train",
    help="Where to save output files",
)
parser.add_argument(
    "--n_samples", type=int, default=300000, help="Number of samples to save"
)
parser.add_argument("--seq_duration", type=float, default=4.0, help="Sequence duration")
parser.add_argument(
    "--save_fixed", type=str2bool, default=False, help="Save fixed mixture audio"
)
parser.add_argument(
    "--target_lufs_mean", type=float, default=-8.0, help="Target LUFS mean"
)
parser.add_argument(
    "--target_lufs_std", type=float, default=-1.0, help="Target LUFS std"
)
parser.add_argument("--sample_rate", type=int, default=44100, help="Sample rate")
parser.add_argument("--seed", type=int, default=46, help="Random seed")
args = parser.parse_args()
random.seed(args.seed)

valid_list = [
    "ANiMAL - Rockshow",
    "Actions - One Minute Smile",
    "Alexander Ross - Goodbye Bolero",
    "Clara Berry And Wooldog - Waltz For My Victims",
    "Fergessen - Nos Palpitants",
    "James May - On The Line",
    "Johnny Lokke - Promises & Lies",
    "Leaf - Summerghost",
    "Meaxic - Take A Step",
    "Patrick Talbot - A Reason To Leave",
    "Skelpolu - Human Mistakes",
    "Traffic Experiment - Sirens",
    "Triviul - Angelsaint",
    "Young Griffo - Pennies",
]

meter = pyln.Meter(args.sample_rate)


sources = ["vocals", "bass", "drums", "other"]
song_list = glob.glob(f"{args.root}/train/*")

vst = pedalboard.load_plugin(
    "/Library/Audio/Plug-Ins/Components/iZOzone9ElementsAUHook.component"
)

if args.save_fixed:
    vst_params = []

    os.makedirs(f"{args.output}/ozone_train_fixed", exist_ok=True)

    for song in song_list:
        print(f"Processing {song}...")
        song_name = os.path.basename(song)
        audio_sources = []
        for source in sources:
            audio_path = f"{song}/{source}.wav"
            audio, sr = librosa.load(audio_path, sr=args.sample_rate, mono=False)
            audio_sources.append(audio)
        stems = np.stack(audio_sources, axis=0)
        mixture = stems.sum(0)
        lufs = meter.integrated_loudness(mixture.T)
        target_lufs = random.gauss(args.target_lufs_mean, args.target_lufs_std)
        adjusted_loudness = target_lufs - lufs

        vst.reset()
        vst.eq_bypass = True
        vst.img_bypass = True
        vst.max_mode = 1.0  # Set IRC2 mode
        vst.max_threshold = min(-adjusted_loudness, 0.0)
        vst.max_character = min(gamma.rvs(2), 10.0)

        print(
            f"Applying Ozone 9 Elements IRC2 with threshold {vst.max_threshold} and character {vst.max_character}..."
        )
        limited_mixture = vst(mixture, args.sample_rate)

        sf.write(
            f"{args.output}/ozone_train_fixed/{song_name}.wav",
            limited_mixture.T,
            args.sample_rate,
        )
        vst_params.append([song_name, vst.max_threshold, vst.max_character])
        # Save the song name and vst parameters (vst.max_threshold and vst.max_character) to a csv file
        with open(f"{args.output}/ozone_train_fixed.csv", "w") as f:
            writer = csv.writer(f)
            writer.writerow(["song_name", "max_threshold", "max_character"])
            for idx, list_vst_param in enumerate(vst_params):
                writer.writerow(list_vst_param)

else:
    if os.path.exists(f"{args.output}/ozone_train_random_0.csv"):
        vst_params = []
        list_csv_files = glob.glob(f"{args.output}/ozone_train_random_*.csv")
        list_csv_files.sort()
        for csv_file in list_csv_files:
            with open(csv_file, "r") as f:
                reader = csv.reader(f)
                next(reader)
                vst_params.extend([row for row in reader])

    else:
        vst_params = []

    song_list = [x for x in song_list if os.path.basename(x) not in valid_list]

    os.makedirs(f"{args.output}/ozone_train_random", exist_ok=True)

    for n in range(len(vst_params), args.n_samples):
        print(f"Processing {n} / {args.n_samples}...")
        seg_name = f"ozone_seg_{n}"

        lufs_not_inf = True
        while lufs_not_inf:
            audio_sources = []
            source_song_names = {}
            source_start_secs = {}
            source_gains = {}
            source_channelswaps = {}
            for source in sources:
                track_path = random.choice(song_list)
                song_name = os.path.basename(track_path)
                audio_path = f"{track_path}/{source}.wav"
                audio, start_sec = load_wav_arbitrary_position_stereo(
                    audio_path, args.sample_rate, args.seq_duration, return_pos=True
                )
                audio, gain = _augment_gain_ozone(audio)
                audio, channelswap = _augment_channelswap_ozone(audio)
                audio_sources.append(audio)
                source_song_names[source] = song_name
                source_start_secs[source] = start_sec
                source_gains[source] = gain
                source_channelswaps[source] = channelswap

            stems = np.stack(audio_sources, axis=0)
            mixture = stems.sum(0)
            lufs = meter.integrated_loudness(mixture.T)

            # if lufs is inf, then the mixture is silent, so we need to generate a new mixture
            lufs_not_inf = np.isinf(lufs)

        target_lufs = random.gauss(args.target_lufs_mean, args.target_lufs_std)
        adjusted_loudness = target_lufs - lufs

        vst.reset()
        vst.eq_bypass = True
        vst.img_bypass = True
        vst.max_mode = 1.0  # Set IRC2 mode
        vst.max_threshold = min(max(-20, -adjusted_loudness), 0.0)
        vst.max_character = min(gamma.rvs(2), 10.0)

        print(
            f"Applying Ozone 9 Elements IRC2 with threshold {vst.max_threshold} and character {vst.max_character}..."
        )
        limited_mixture = vst(mixture, args.sample_rate)

        sf.write(
            f"{args.output}/ozone_train_random_0/{seg_name}.wav",
            limited_mixture.T,
            args.sample_rate,
        )
        vst_params.append(
            [
                seg_name,
                vst.max_threshold,
                vst.max_character,
                source_song_names["vocals"],
                source_start_secs["vocals"],
                source_gains["vocals"],
                source_channelswaps["vocals"],
                source_song_names["bass"],
                source_start_secs["bass"],
                source_gains["bass"],
                source_channelswaps["bass"],
                source_song_names["drums"],
                source_start_secs["drums"],
                source_gains["drums"],
                source_channelswaps["drums"],
                source_song_names["other"],
                source_start_secs["other"],
                source_gains["other"],
                source_channelswaps["other"],
            ]
        )

        if (n + 1) % 20000 == 0 or n == args.n_samples - 1:
            # We will separate the csv file into multiple files to avoid memory error
            # Save the song name and vst parameters (vst.max_threshold and vst.max_character) to a csv file
            number = int(n // 20000)
            with open(f"{args.output}/ozone_train_random_{number}.csv", "w") as f:
                writer = csv.writer(f)
                writer.writerow(
                    [
                        "song_name",
                        "max_threshold",
                        "max_character",
                        "vocals_name",
                        "vocals_start_sec",
                        "vocals_gain",
                        "vocals_channelswap",
                        "bass_name",
                        "bass_start_sec",
                        "bass_gain",
                        "bass_channelswap",
                        "drums_name",
                        "drums_start_sec",
                        "drums_gain",
                        "drums_channelswap",
                        "other_name",
                        "other_start_sec",
                        "other_gain",
                        "other_channelswap",
                    ]
                )
                for idx, list_vst_param in enumerate(
                    vst_params[number * 20000 : (number + 1) * 20000]
                ):
                    writer.writerow(list_vst_param)