File size: 4,688 Bytes
126c13a
 
 
ad36db4
c30bd4f
126c13a
ad36db4
126c13a
c30bd4f
 
126c13a
 
28e5d96
 
 
 
 
 
 
 
 
126c13a
 
389b0db
ad36db4
126c13a
 
 
389b0db
126c13a
 
 
 
 
ad36db4
 
dd3e151
ad36db4
 
5ad8015
863fa80
126c13a
 
 
f5d99fc
126c13a
 
 
ad36db4
126c13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389b0db
126c13a
 
ad36db4
 
 
863fa80
dd3e151
126c13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389b0db
 
 
 
cdf395b
389b0db
 
cdf395b
126c13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389b0db
126c13a
 
ad36db4
 
44dd301
 
 
389b0db
126c13a
 
 
 
 
 
 
 
 
5ad8015
126c13a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline, StableDiffusionImg2ImgPipeline
from transformers.utils.hub import move_cache
import torch
from PIL import Image

move_cache()

device = "cuda" if torch.cuda.is_available() else "cpu"

# Check if a GPU is available and set the appropriate torch_dtype and device
if torch.cuda.is_available():
    torch_dtype = torch.float16
    device = "cuda"
else:
    torch_dtype = torch.float32
    device = "cpu"


if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch_dtype, safety_checker = None, requires_safety_checker = False)
    #pipe = DiffusionPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch.float16, variant="fp16")
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else: 
    pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch_dtype, safety_checker = None, requires_safety_checker = False)
    pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def generate_image(uploaded_image):
    # Open the uploaded image
    image = Image.open(uploaded_image)        
    return output

def infer(init_img, prompt, negative_prompt, seed, width, height, guidance_scale, strength):
    
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        image = init_img,
        prompt = prompt, 
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale, 
        strength = strength, 
        width = width, 
        height = height,
        generator = generator
    ).images[0] 
    
    return image

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Image-to-Image Demo
        Currently running on {power_device}.
        """)


        with gr.Row():
            init_img = gr.Image(type="pil")

        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            
            with gr.Row():
                    seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=1024,
                    step=1,
                    value=0,
                )            
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=5.0,
                )
                
                strength = gr.Slider(
                    label="strength",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=0.5,
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )

    run_button.click(
        fn = infer,
        inputs = [init_img, prompt, negative_prompt, seed, width, height, guidance_scale, strength],
        outputs = [result]
    )

demo.queue().launch()