Spaces:
Running
Running
File size: 4,688 Bytes
126c13a ad36db4 c30bd4f 126c13a ad36db4 126c13a c30bd4f 126c13a 28e5d96 126c13a 389b0db ad36db4 126c13a 389b0db 126c13a ad36db4 dd3e151 ad36db4 5ad8015 863fa80 126c13a f5d99fc 126c13a ad36db4 126c13a 389b0db 126c13a ad36db4 863fa80 dd3e151 126c13a 389b0db cdf395b 389b0db cdf395b 126c13a 389b0db 126c13a ad36db4 44dd301 389b0db 126c13a 5ad8015 126c13a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline, StableDiffusionImg2ImgPipeline
from transformers.utils.hub import move_cache
import torch
from PIL import Image
move_cache()
device = "cuda" if torch.cuda.is_available() else "cpu"
# Check if a GPU is available and set the appropriate torch_dtype and device
if torch.cuda.is_available():
torch_dtype = torch.float16
device = "cuda"
else:
torch_dtype = torch.float32
device = "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch_dtype, safety_checker = None, requires_safety_checker = False)
#pipe = DiffusionPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch.float16, variant="fp16")
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch_dtype, safety_checker = None, requires_safety_checker = False)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def generate_image(uploaded_image):
# Open the uploaded image
image = Image.open(uploaded_image)
return output
def infer(init_img, prompt, negative_prompt, seed, width, height, guidance_scale, strength):
generator = torch.Generator().manual_seed(seed)
image = pipe(
image = init_img,
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
strength = strength,
width = width,
height = height,
generator = generator
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Image-to-Image Demo
Currently running on {power_device}.
""")
with gr.Row():
init_img = gr.Image(type="pil")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=1024,
step=1,
value=0,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
strength = gr.Slider(
label="strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [init_img, prompt, negative_prompt, seed, width, height, guidance_scale, strength],
outputs = [result]
)
demo.queue().launch() |