Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline, StableDiffusionImg2ImgPipeline | |
from transformers.utils.hub import move_cache | |
import torch | |
from PIL import Image | |
move_cache() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Check if a GPU is available and set the appropriate torch_dtype and device | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
device = "cuda" | |
else: | |
torch_dtype = torch.float32 | |
device = "cpu" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch_dtype, safety_checker = None, requires_safety_checker = False) | |
#pipe = DiffusionPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch.float16, variant="fp16") | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
else: | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch_dtype, safety_checker = None, requires_safety_checker = False) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def generate_image(uploaded_image): | |
# Open the uploaded image | |
image = Image.open(uploaded_image) | |
return output | |
def infer(init_img, prompt, negative_prompt, seed, width, height, guidance_scale, strength): | |
generator = torch.Generator().manual_seed(seed) | |
prompt = "nvinkpunk " + prompt | |
image = pipe( | |
image = init_img, | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
guidance_scale = guidance_scale, | |
strength = strength, | |
width = width, | |
height = height, | |
generator = generator | |
).images[0] | |
return image | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Image-to-Image Demo | |
Currently running on {power_device}. | |
""") | |
with gr.Row(): | |
init_img = gr.Image(type="pil") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
with gr.Row(): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=1024, | |
step=1, | |
value=0, | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, | |
) | |
strength = gr.Slider( | |
label="strength", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.5, | |
) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt] | |
) | |
run_button.click( | |
fn = infer, | |
inputs = [init_img, prompt, negative_prompt, seed, width, height, guidance_scale, strength], | |
outputs = [result] | |
) | |
demo.queue().launch() |