import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline, StableDiffusionImg2ImgPipeline from transformers.utils.hub import move_cache import torch from PIL import Image move_cache() device = "cuda" if torch.cuda.is_available() else "cpu" # Check if a GPU is available and set the appropriate torch_dtype and device if torch.cuda.is_available(): torch_dtype = torch.float16 device = "cuda" else: torch_dtype = torch.float32 device = "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch_dtype, safety_checker = None, requires_safety_checker = False) #pipe = DiffusionPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch.float16, variant="fp16") pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) else: pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch_dtype, safety_checker = None, requires_safety_checker = False) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def generate_image(uploaded_image): # Open the uploaded image image = Image.open(uploaded_image) return output def infer(init_img, prompt, negative_prompt, seed, width, height, guidance_scale, strength): generator = torch.Generator().manual_seed(seed) prompt = "nvinkpunk " + prompt image = pipe( image = init_img, prompt = prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, strength = strength, width = width, height = height, generator = generator ).images[0] return image examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Image-to-Image Demo Currently running on {power_device}. """) with gr.Row(): init_img = gr.Image(type="pil") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) with gr.Row(): seed = gr.Slider( label="Seed", minimum=0, maximum=1024, step=1, value=0, ) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, ) strength = gr.Slider( label="strength", minimum=0.0, maximum=1.0, step=0.1, value=0.5, ) gr.Examples( examples = examples, inputs = [prompt] ) run_button.click( fn = infer, inputs = [init_img, prompt, negative_prompt, seed, width, height, guidance_scale, strength], outputs = [result] ) demo.queue().launch()